M. Tech. (Electronics and Telecommunication)

Curriculum Structure

Specialization: Wireless & mobile communication

Semester-I

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>Core 1/ MWMT-101</td>
<td>Advanced Communication Networks</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Core 2/ MWMT-102</td>
<td>Wireless and Mobile Communication</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Prog. Specific Elective PE1 MWMT-111 (1)</td>
<td>Wireless Sensor Networks</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Optical Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Statistical Information Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Prog. Specific Elective PE2 MWMT-121 (1)</td>
<td>Cognitive Radio</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) RF and Microwave Circuit Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) DSP Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LAB 1/ MWMP-101</td>
<td>Advanced Communication Networks Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>LAB 2/ MWMP-102</td>
<td>Wireless and Mobile Communication Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Audit course 1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Total</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester-II

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>Core 3/ MWMT-201</td>
<td>Antennas and Radiating Systems</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Core 4/ MWMT-202</td>
<td>Advanced Digital Signal Processing</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Prog. Specific Elective PE3 MWMT-231 (1)</td>
<td>Satellite Communication</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Internet of Things</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Voice and data networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Course Type/Code</td>
<td>Course Name</td>
<td>Teaching Scheme</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>---</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Prog. Specific Elective PE5</td>
<td>Elective V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWMT-351</td>
<td>(1) High Performance Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWMT-352</td>
<td>(2) Pattern Recognition and Machine learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWMT-353</td>
<td>(3) Remote Sensing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Open Elective / MWMT-391</td>
<td>1. Business Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Industrial Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Operations Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Composite Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Waste to Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dissertation / MWMP-301</td>
<td>Dissertation Phase – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester-III

Sr. No. | **Course Type/Code** | **Course Name** | **Teaching Scheme** | **Credits** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prog. Specific Elective PE5</td>
<td>Elective V</td>
<td>L=3 T=0 P=0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MWMT-351</td>
<td>(1) High Performance Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWMT-352</td>
<td>(2) Pattern Recognition and Machine learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWMT-353</td>
<td>(3) Remote Sensing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Open Elective / MWMT-391</td>
<td>1. Business Analytics</td>
<td>L=3 T=0 P=0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Industrial Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Operations Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Composite Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Waste to Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dissertation / MWMP-301</td>
<td>Dissertation Phase – I</td>
<td>L=0 T=0 P=20</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Total</td>
<td></td>
<td>L=6 T=0 P=20</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester-IV

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dissertation / MWMP-401</td>
<td>Dissertation Phase – II</td>
<td>L=-- T=-- P=32</td>
<td>16</td>
</tr>
</tbody>
</table>
Audit course 1 & 2

- English for Research Paper Writing
- Disaster Management
- Sanskrit for Technical Knowledge
- Value Education
- Constitution of India
- Pedagogy Studies
- Stress Management by Yoga
- Personality Development through Life Enlightenment Skills.
Syllabus Contents:

Unit 1: Overview of Internet-Concepts, challenges and history. Overview of ATM. TCP/IP Congestion and Flow Control in Internet-Throughput analysis of TCP congestion control. TCP for high bandwidth delay networks. Fairness issues in TCP.

Unit 2: Real Time Communications over Internet. Adaptive applications. Latency and through put issues. Integrated Services Model (intServ). Resource reservation in Internet. RSVP.; Characterization of Traffic by Linearly Bounded Arrival Processes (LBAP). Leaky bucket algorithm and its properties.

Unit 3: Packet Scheduling Algorithms-requirements and choices. Scheduling guaranteed service connections. GPS, WFQ and Rate proportional algorithms. High speed scheduler design. Theory of Latency Rate servers and delay bounds in packet switched networks for LBAP traffic.; Active Queue Management - RED, WRED and Virtual clock. Control theoretic analysis of active queue management.

Unit 4: IP address lookup-challenges. Packet classification algorithms and Flow Identification-Grid of Tries, Cross producting and controlled prefix expansion algorithms.

Unit 5: control in Internet. Concept of Effective bandwidth. Measurement based admission control. Differentiated Services in Internet (DiffServ). DiffServ architecture and framework.

Unit 6: IPV4, IPV6, IP tunneling, IP switching and MPLS, Overview of IP over ATM and its evolution to IP switching. MPLS architecture and framework. MPLS Protocols. Traffic engineering issues in MPLS.

References:

Course Outcomes: At the end of this course, students will be able to

Design appropriate mobile communication systems.
Apply frequency-reuse concept in mobile communications, and to analyze its effects on interference, system capacity, handoff techniques
Distinguish various multiple-access techniques for mobile communications e.g. FDMA, TDMA, CDMA, and their advantages and disadvantages.
Analyze path loss and interference for wireless telephony and their influences on a mobile-communication system’s performance.
Analyze and design CDMA system functioning with knowledge of forward and reverse channel details, advantages and disadvantages of using the technology
Understanding upcoming technologies like 3G, 4G etc.

Syllabus Contents:

Unit 1: Cellular Communication Fundamentals: Cellular system design, Frequency reuse, cell splitting, handover concepts, Co channel and adjacent channel interference, interference reduction techniques and methods to improve cell coverage, Frequency management and channel assignment. GSM architecture and interfaces, GSM architecture details, GSM subsystems, GSM Logical Channels, Data Encryption in GSM, Mobility Management, Call Flows in GSM. 2.5 G Standards: High speed Circuit Switched Data (HSCSD), General Packet Radio Service (GPRS), 2.75 G Standards: EDGE.

Unit 2: Spectral efficiency analysis based on calculations for Multiple access technologies: TDMA, FDMA and CDMA, Comparison of these technologies based on their signal separation techniques, advantages, disadvantages and application areas. Wireless network planning (Link budget and power spectrum calculations).

Unit 4: Equalization, Diversity: Equalizers in a communications receiver, Algorithms for adaptive equalization, diversity techniques, space, polarization, frequency diversity, Interleaving.

Unit 5: Code Division Multiple Access: Introduction to CDMA technology, IS 95 system Architecture, Air Interface, Physical and logical channels of IS 95, Forward Link and Reverse link operation, Physical and Logical channels of IS 95 CDMA, IS 95 CDMA Call Processing, soft Handoff, Evolution of IS 95 (CDMA One) to CDMA 2000, CDMA 2000 layering structure and channels.

Unit 6: Higher Generation Cellular Standards: 3G Standards: evolved EDGE, enhancements in 4G standard, Architecture and representative protocols, call flow for LTE, VoLTE, UMTS, introduction to 5G.

References:
Program Elective : 1

Paper Code: MWMT-111
Paper: Wireless Sensor Networks

Course Outcomes: At the end of this course, students will be able to
Design wireless sensor network system for different applications under consideration.
Understand the hardware details of different types of sensors and select right type of sensor for various applications.
Understand radio standards and communication protocols to be used for wireless sensor network based systems and application.
Use operating systems and programming languages for wireless sensor nodes, performance of wireless sensor networks systems and platforms.
Handle special issues related to sensors like energy conservation and security challenges.

Syllabus Contents:

Unit 1: Introduction and overview of sensor network architecture and its applications, sensor network comparison with Ad Hoc Networks, Sensor node architecture with hardware and software details.

Unit 2: Hardware: Examples like mica2, micaZ, telosB, cricket, Imote2, tmote, btnode, and Sun SPOT, Software (Operating Systems): tinyOS, MANTIS, Contiki, and RetOS.

Unit 3: Programming tools: C, nesC. Performance comparison of wireless sensor network simulation and experimental platforms like open source (ns-2) and commercial (QualNet, Opnet).

Unit 4: Overview of sensor network protocols (details of atleast 2 important protocol per layer): Physical, MAC and routing/Network layer protocols, node discovery protocols, multi-hop and cluster based protocols, Fundamentals of 802.15.4, Bluetooth, BLE (Bluetooth low energy), UWB.

Unit 5: Data dissemination and processing; differences compared with other database management systems, data storage; query processing.

Unit 6: Specialized features: Energy preservation and efficiency; security challenges; fault-tolerance; Issues related to Localization, connectivity and topology, Sensor deployment mechanisms; coverage issues; sensor Web; sensor Grid, Open issues for future research, and Enabling technologies in wireless sensor network.

References:

Program Elective 1:

Paper Code: MWMT-112
Paper: Optical Networks

Course Outcomes: At the end of this course, students will be able to Contribute in the areas of optical network and WDM network design. Implement simple optical network and understand further technology developments for future enhanced network.

Syllabus Contents:

Unit 1: SONET/SDH: optical transport network, IP, routing and forwarding, multiprotocol label switching.

Unit 2: WDM network elements: optical line terminals and amplifiers, optical add/drop multiplexers, OADM architectures, reconfigurable OADM, optical cross connects.

Unit 3: Control and management: network management functions, optical layer services and interfacing, performance and fault management, configuration management, optical safety.

Unit 4: Network Survivability: protection in SONET/SDH & client layer, optical layer protection schemes

Unit 5: WDM network design: LTD and RWA problems, dimensioning wavelength routing networks, statistical dimensioning models.

Unit 6: Access networks: Optical time division multiplexing, synchronization, header processing, burst switching, test beds, Introduction to PON, GPON, AON.

References:

Program Elective 1:

Paper Code: MWMT-113
Paper: Statistical Information Processing

Course Outcomes: At the end of this course, students will be able to
Characterize and apply probabilistic techniques in modern decision systems, such as information
systems, receivers, filtering and statistical operations.
Demonstrate mathematical modeling and problem solving using such models.
Comparatively evolve key results developed in this course for applications to signal processing,
communications systems.
Develop frameworks based in probabilistic and stochastic themes for modeling and analysis of
various systems involving functionalities in decision making, statistical inference, estimation and
detection.

Syllabus Contents:

Unit 1: Review of random variables: Probability Concepts, distribution and density functions,
moments, independent, uncorrelated and orthogonal random variables; Vector-space representation
of Random variables, Vector quantization, Tchebichef inequality theorem, Central Limit theorem,
Discrete & Continuous Random Variables. Random process: Expectations, Moments, Ergodicity,
Discrete-Time Random Processes Stationary process, autocorrelation and auto covariance functions,
Spectral representation of random signals, Properties of power spectral density, Gaussian Process and
White noise process.

Unit 2: Random signal modeling: MA(q), AR(p), ARMA(p,q) models, Hidden Markov Model &its
applications ,Linear System with random input , Forward and Backward Predictions, Levinson
Durbin Algorithm.

Unit 3: Statistical Decision Theory: Bayes’ Criterion, Binary Hypothesis Testing, M-ary Hypothesis
Testing, Minimax Criterion, Neyman-Pearson Criterion, Composite Hypothesis Testing. Parameter
Estimation Theory: Maximum Likelihood Estimation, Generalized Likelihood Ratio Test ,Some
Criteria for Good Estimators, Bayes’ Estimation Minimum Mean-Square Error Estimate, Minimum,
Mean Absolute Value of Error Estimate Maximum A Posteriori Estimate , Multiple Parameter
Estimation Best Linear Unbiased Estimator ,Least-Square Estimation Recursive Least-Square
Estimator.

Unit 4: Spectral analysis: Estimated autocorrelation function, Periodogram, Averaging the
periodogram (Bartlett Method), Welch modification, Parametric method, AR(p) spectral estimation
and detection of Harmonic signals.

Unit 5: Information Theory and Source Coding: Introduction, Uncertainty, Information and Entropy,
Source coding theorem, Huffman, Shanon Fano , Arithmetic, Adaptive coding, RLE, LZW Data
compaction, , LZ-77, LZ-78. Discrete Memory less channels, Mutual information, channel capacity,
Channel coding theorem, Differential entropy and mutual information for continuous ensembles.

Unit 6: Application of Information Theory: Group, Ring & Field, Vector, GF addition, multiplication
rules. Introduction to BCH codes, Primitive elements ,Minimal polynomials, Generator polynomials
in terms of Minimal polynomials, Some examples of BCH codes,& Decoder, Reed- Solomon codes
& Decoder, Implementation of Reed Solomon encoders and decoders.
References:

Program Elective 2:

Paper Code: MWMT-121
Paper: Cognitive Radio

Course Outcomes: At the end of this course, students will be able to Understand the fundamental concepts of cognitive radio networks. Develop the cognitive radio, as well as techniques for spectrum holes detection that cognitive radio takes advantages in order to exploit it. Understand technologies to allow an efficient use of TVWS for radio communications based on two spectrum sharing business models/policies. Understand fundamental issues regarding dynamic spectrum access, the radio-resource management and trading, as well as a number of optimization techniques for better spectrum exploitation.

Syllabus Contents:

Unit 1: Introduction to Cognitive Radios: Digital dividend, cognitive radio (CR) architecture, functions of cognitive radio, dynamic spectrum access (DSA), components of cognitive radio, spectrum sensing, spectrum analysis and decision, potential applications of cognitive radio.

Unit 2: Spectrum Sensing: Spectrum sensing, detection of spectrum holes (TVWS), collaborative sensing, geo-location database and spectrum sharing business models (spectrum of commons, real time secondary spectrum market).

Unit 3: Optimization Techniques of Dynamic Spectrum Allocation: Linear programming, convex programming, non-linear programming, integer programming, dynamic programming, stochastic programming.

Unit 4: Dynamic Spectrum Access and Management: Spectrum broker, cognitive radio architectures, centralized dynamic spectrum access, distributed dynamic spectrum access, learning algorithms and protocols.

Unit 5: Spectrum Trading: Introduction to spectrum trading, classification to spectrum trading, radio resource pricing, brief discussion on economics theories in DSA (utility, auction theory), classification of auctions (single auctions, double auctions, concurrent, sequential).

References:

Program Elective 2

Paper Code: MWMT-122
Paper: RF and Microwave Circuit Design

Course Outcomes: At the end of this course, students will be able to Understand the behavior of RF passive components and model active components. Perform transmission line analysis. Demonstrate use of Smith Chart for high frequency circuit design. Justify the choice/selection of components from the design aspects. Contribute in the areas of RF circuit design.

Syllabus Contents:

Unit 1: Transmission Line Theory: Lumped element circuit model for transmission line, field analysis, Smith chart, quarter wave transformer, generator and load mismatch, impedance matching and tuning.

Unit 2: Microwave Network Analysis: Impedance and equivalent voltage and current, Impedance and admittance matrix, The scattering matrix, transmission matrix, Signal flow graph.

Unit 3: Microwave Components: Microwave resonators, Microwave filters, power dividers and directional couplers, Ferromagnetic devices and components.

Unit 4: Nonlinearity And Time Variance Inter-symbol interference, random process & noise, definition of sensitivity and dynamic range, conversion gain and distortion.

Unit 5: Microwave Semiconductor Devices And Modeling: PIN diode, Tunnel diodes, Varactor diode, Schottky diode, IMPATT and TRAPATT devices, transferred electron devices, Microwave BJTs, GaAs FETs, low noise and power GaAs FETs, MESFET, MOSFET, HEMT.

Unit 6: Amplifiers Design: Power gain equations, stability, impedance matching, constant gain and noise figure circles, small signal, low noise, high power and broadband amplifier, oscillators, Mixers design.

References:

Program Elective 2

Paper Code: MWMT-123
Paper: DSP Architecture

Course Outcomes:
At the end of this course, students will be able to Identify and formalize architectural level characterization of P-DSP hardware Ability to design, programming (assembly and C), and testing code using Code Composer Studio environment Deployment of DSP hardware for Control, Audio and Video Signal processing applications Understanding of major areas and challenges in DSP based embedded systems

Syllabus Contents:

Unit 1: Programmable DSP Hardware: Processing Architectures (von Neumann, Harvard), DSP core algorithms (FIR, IIR, Convolution, Correlation, FFT), IEEE standard for Fixed and Floating Point Computations, Special Architectures Modules used in Digital Signal Processors (like MAC unit, Barrel shifters), On-Chip peripherals, DSP benchmarking.

Unit 3: VLIW Architecture: Current DSP Architectures, GPUs as an alternative to DSP Processors, TMS320C6X Family, Addressing Modes, Replacement of MAC unit by ILP, Detailed study of ISA, Assembly Language Programming, Code Composer Studio, Mixed C and Assembly Language programming, On-chip peripherals, Simple applications developments as an embedded environment.

Unit 4: Multi-core DSPs: Introduction to Multi-core computing and applicability for DSP hardware, Concept of threads, introduction to P-thread, mutex and similar concepts, heterogeneous and homogenous multi-core systems, Shared Memory parallel programming –Open MP approach of parallel programming, PRAGMA directives, Open MP Constructs for work sharing like for loop, sections, TI TMS320C6678 (Eight Core subsystem).

Unit 5: FPGA based DSP Systems: Limitations of P-DSPs, Requirements of Signal processing for Cognitive Radio (SDR), FPGA based signal processing design-case study of a complete design of DSP processor.

References:
Paper: Advanced Communication Networks Laboratory

Course Outcomes: At the end of this course, students will be able to Identify the different types of network devices and their functions within a network. Understand and build the skills of sub-netting and routing mechanisms. Understand basic protocols of computer networks, and how they can be used to assist in network design and implementation.

List of Assignments:

Study of Networking Commands (Ping, Tracert, TELNET, nslookup, netstat, ARP, RARP) and Network Configuration Files.

Linux Network Configuration.

- Configuring NIC’s IP Address. Determining IP Address and MAC Address using if-config command. Changing IP Address using if-config. Static IP Address and Configuration by Editing.
- Determining IP Address using DHCP. Configuring Hostname in /etc/hosts file.

Design TCP iterative Client and Server application to reverse the given input sentence. Design a TCP concurrent Server to convert a given text into upper case using multiplexing system call “select”.

Design UDP Client Server to transfer a file. Configure a DHCP Server to serve contiguous IP addresses to a pool of four IP devices with a default gateway and a default DNS address. Integrate the DHCP server with a BOOTP demon to automatically serve Windows and Linux OS Binaries based on client MAC address. Configure DNS: Make a caching DNS client, and a DNS Proxy; implement reverse DNS and forward DNS, using TCP dump/Wire shark characterize traffic when the DNS server is up and when it is down. Configure a mail server for IMAP/POP protocols and write a simple SMTP client in C/C++/Java client to send and receive mails. Configure FTP Server on a Linux/Windows machine using a FTP client/SFTP client characterize file transfer rate for a cluster of small files 100k each and a video file of 700mb. Use a TFTP client and repeat the experiment. Signaling and QoS of labeled paths using RSVP in MPLS.

Find shortest paths through provider network for RSVP and BGP. Understand configuration, forwarding tables, and debugging of MPLS.
Paper: Wireless and Mobile Communication Laboratory

Course Outcomes: At the end of this course, students will be able to:

- Understanding Cellular concepts, GSM and CDMA networks
- To study GSM handset by experimentation and fault insertion techniques
- Understanding of 3G communication system by means of various AT commands usage in GSM
- Understanding CDMA concept using DSSS kit
- To learn, understand and develop concepts of Software Radio in real time environment

List of Assignments:

- Understanding Cellular Fundamentals like Frequency Reuse, Interference, cell splitting, multi path environment, Coverage and Capacity issues using communication software.

- Knowing GSM and CDMA architecture, network concepts, call management, call setup, call release, Security and Power Control, Handoff Process and types, Rake Receiver etc.

- Study of GSM handset for various signalling and fault insertion techniques (Major GSM handset sections: clock, SIM card, charging, LCD module, Keyboard, User interface).

- To study transmitters and receiver section in mobile handset and measure frequency band signal and GMSK modulating signal.

- To study various GSM AT Commands their use and developing new application using it.

- Understanding of 3G Communication System with features like; transmission of voice and video calls, SMS, MMS, TCP/IP, HTTP, GPS and File system by AT Commands in 3G network.

- Study of DSSS technique for CDMA, observe effect of variation of types of PN codes, chip rate, spreading factor, processing gain on performance.

- To learn and develop concepts of Software Radio in real time environment by studying the building blocks like Base band and RF section, convolution encoder, Interleaver and De-Interleaver.

- To study and analyze different modulation techniques in time and frequency domain using SDR kit.
Paper: Research Methodology and IPR

Course Outcomes:
At the end of this course, students will be able to Understand research problem formulation. Analyze research related information Follow research ethics
Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Syllabus Contents:

Unit 1: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2: Effective literature studies approaches, analysis Plagiarism, Research ethics

Unit 3: Effective technical writing, how to write report, Paper

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

References:
Stuart Melville and Wayne Goddard, “Research methodology: an introduction for science & engineering students”
Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
Semester II
Core 3

Paper Code: MWMT-201
Paper: Antennas and Radiating Systems

Course Outcomes: At the end of this course, students will be able to Compute the far field distance, radiation pattern and gain of an antenna for given current distribution. Estimate the input impedance, efficiency and ease of match for antennas. Compute the array factor for an array of identical antennas. Design antennas and antenna arrays for various desired radiation pattern characteristics.

Syllabus Contents:

Unit 2: Linear Wire Antennas: Infinitesimal dipole, Small dipole, Region separation, Finite length dipole, half wave dipole, Ground effects. Loop Antennas: Small Circular loop, Circular Loop of constant current, Circular loop with non uniform current.

Unit 3: Linear Arrays: Two element array, N Element array: Uniform Amplitude and spacing, Broadside and End fire array, Super directivity, Planar array, Design consideration.

Unit 5: Micro strip Antennas: Basic Characteristics, Feeding mechanisms, Method of analysis, Rectangular Patch, Circular Patch.

Unit 6: Reflector Antennas: Plane reflector, parabolic reflector, Cassegrain reflectors, Introduction to MIMO.

References:
Core-4

Paper Code: MWMT-202
Paper: Advanced Digital Signal Processing

Course Outcomes: At the end of this course, students will be able to
To understand theory of different filters and algorithms
To understand theory of multirate DSP, solve numerical problems and write algorithms To understand theory of prediction and solution of normal equations
To know applications of DSP at block level.

Syllabus Contents:

Unit 1: Overview of DSP, Characterization in time and frequency, FFT Algorithms, Digital filter design and structures: Basic FIR/IIR filter design & structures, design techniques of linear phase FIR filters, IIR filters by impulse invariance, bilinear transformation, FIR/IIR Cascaded lattice structures, parallel realization of IIR.

Unit 2: Multi rate DSP, Decimators and Interpolators, Sampling rate conversion, multistage decimator & interpolator, poly phase filters, QMF, digital filter banks, Applications in sub band coding.

Unit 3: Linear prediction & optimum linear filters, stationary random process, forward-backward linear prediction filters, solution of normal equations, AR Lattice and ARMA Lattice-Ladder Filters, Wiener Filters for Filtering and Prediction.

Unit 4: Adaptive Filters, Applications, Gradient Adaptive Lattice, Minimum mean square criterion, LMS algorithm, Recursive Least Square algorithm

Unit 6: Application of DSP & Multi rate DSP, Application to Radar, introduction to wavelets, application to image processing, design of phase shifters, DSP in speech processing & other applications

References:

Course Outcomes: At the end of this course, students will be able to:
Visualize the architecture of satellite systems as a means of high speed, high range communication system.
State various aspects related to satellite systems such as orbital equations, sub-systems in a satellite, link budget, modulation and multiple access schemes.
Solve numerical problems related to orbital motion and design of link budget for the given parameters and conditions.

Syllabus Contents:

Unit 1: Architecture of Satellite Communication System: Principles and architecture of satellite Communication, Brief history of Satellite systems, advantages, disadvantages, applications, and frequency bands used for satellite communication and their advantages/drawbacks.

Unit 2: Orbital Analysis: Orbital equations, Kepler’s laws of planetary motion, Apogee and Perigee for an elliptical orbit, evaluation of velocity, orbital period, angular velocity etc of a satellite, concepts of Solar day and Sidereal day.

Unit 3: Satellite sub-systems: Architecture and Roles of various sub-systems of a satellite system such as Telemetry, tracking, command and monitoring (TTC & M), Attitude and orbit control system (AOCS), Communication sub-system, power sub-systems, antenna sub-system.

Unit 4: Typical Phenomena in Satellite Communication: Solar Eclipse on satellite, its effects, remedies for Eclipse, Sun Transit Outage phenomena, its effects and remedies, Doppler frequency shift phenomena and expression for Doppler shift.

Unit 5: Satellite link budget: Flux density and received signal power equations, Calculation of System noise temperature for satellite receiver, noise power calculation, Drafting of satellite link budget and C/N ratio calculations in clear air and rainy conditions, Case study of Personal Communication system (satellite telephony) using LEO.

Unit 6: Modulation and Multiple Access Schemes used in satellite communication. of VSAT, DBS-TV satellites and few recent communication satellites launched by NASA/ISRO. GPS.

References:

Course Outcomes: At the end of this course, students will be able to Understand what IoT technologies are used for today, and what is required in certain scenarios. Understand the types of technologies that are available and in use today and can be utilized to implement IoT solutions. Apply these technologies to tackle scenarios in teams of using an experimental platform for implementing prototypes and testing them as running applications.

Syllabus Contents:

Unit 1: Smart cities and IoT revolution, Fractal cities, From IT to IoT, M2M and peer networking concepts, Ipv4 and IPV6.

Unit 2: Software Defined Networks SDN, From Cloud to Fog and MIST networking for IoT communications, Principles of Edge/P2P networking, Protocols to support IoT communications, modular design and abstraction, security and privacy in fog.

Unit 3: Wireless sensor networks: introduction, IOT networks (PAN, LAN and WAN), Edgeree source pooling and caching, client side control and configuration.

Unit 4: Smart objects as building blocks for IoT, Open source hardware and Embedded systems platforms for IoT, Edge/gateway, IO drivers, C Programming, multithreading concepts.

Unit 5: Operating systems requirement of IoT environment, study of mbed, RIoT, and Contiki operating systems, Introductory concepts of big data for IoT applications.

Unit 6: Applications of IoT, Connected cars IoT Transportation, Smart Grid and Healthcare sectors using IoT, Security and legal considerations, IT Act 2000 and scope for IoT legislation.

References:

Web resources:

https://developer.mbed.org/handbook/AnalogIn

http://www.libelium.com/50_sensor_applications/

Paper Code: MWMT-233
Paper: Voice and Data Networks

Syllabus Contents:

Unit 2: Layered and Layer less Communication, Cross layer design of Networks, Voice Networks (wired and wireless) and Switching, Circuit Switching and Packet Switching, Statistical Multiplexing.

Unit 3: Data Networks and their Design, Link layer design - Link adaptation, Link Layer Protocols, Retransmission Mechanisms (ARQ), Hybrid ARQ (HARQ), Go Back N, Selective Repeat protocols and their analysis.

Unit 4: Queuing Models of Networks, Traffic Models, Little's Theorem, Markov chains, M/M/1 and other Markov systems, Multiple Access Protocols, Aloha System, Carrier Sensing, Examples of Local area networks.

Unit 5: Inter-networking, Bridging, Global Internet, IP protocol and addressing, Sub netting, Classless Inter domain Routing (CIDR), IP address lookup, Routing in Internet. End to End Protocols, TCP and UDP. Congestion Control, Additive Increase/Multiplicative Decrease, Slow Start, Fast Retransmit/Fast Recovery.

Unit 6: Congestion avoidance, RED TCP Throughput Analysis, Quality of Service in Packet Networks. Network Calculus, Packet Scheduling Algorithms.

References:

Paper Code: MWMT-241
Paper: Markov Chains and Queueing Systems

Course Outcomes: At the end of this course, students will be able to understand Markov Chains and regenerative processes used in modelling a wide variety of systems and phenomena. Model a system as a queuing system with some aspect of the queue governed by a random process. Understand telecommunication systems modelling using Markov chains with special emphasis on developing queuing models.

Syllabus Contents:

Unit 1: Introduction: Review of basic probability, properties of nonnegative random variables, laws of large numbers and the Central Limit Theorem.

Unit 2: Renewal Processes: Basic definitions, recurrence times, rewards and renewal reward theorem, point processes, Poisson process, Wald's equation, Blackwell's theorem.

Unit 3: Discrete time Markov chains: definitions and properties, matrix representation, Perron-Frobenius theory.

Unit 5: Fundamental queuing results: Little's theorem, invariance of the mean delay, Conservation law.

Markovian queues: Jackson and BCMP networks, numerical Algorithms. M/G/1 & G/M/1 queues and G/G/1 queues.

Unit 6: Advanced queuing models: priority, vacation and retrials in queues.

References:

Course Outcomes: At the end of this course, students will be able to: Understand channel modeling and propagation, MIMO Capacity, space-time coding, MIMO receivers, MIMO for multi-carrier systems (e.g. MIMO-OFDM), multi-user communications, multi-user MIMO. Understand cooperative and coordinated multi-cell MIMO, introduction to MIMO in 4G (LTE, LTE-Advanced, WiMAX). Perform Mathematical modeling and analysis of MIMO systems.

Syllabus Contents:

Unit 1: Introduction to Multi-antenna Systems, Motivation, Types of multi-antenna systems, MIMO vs. multi-antenna systems.

Unit 2: Diversity, Exploiting multipath diversity, Transmit diversity, Space-time codes, The Alamouti scheme, Delay diversity, Cyclic delay diversity, Space-frequency codes, Receive diversity, The rake receiver, Combining techniques, Spatial Multiplexing, Spectral efficiency and capacity, Transmitting independent streams in parallel, Mathematical notation

Unit 3: The generic MIMO problem, Singular Value Decomposition, Eigen values and eigenvectors, Equalising MIMO systems, Disadvantages of equalizing MIMO systems, Pre-distortion in MIMO systems, Disadvantages of pre-distortion in MIMO systems, Pre-coding and combining in MIMO systems, Advantages of pre-coding and combining, Disadvantages of pre-coding and combining, Channel state information.

Unit 4: Codebooks for MIMO, Beam forming, Beam forming principles, Increased , Interference cancellation, Switched beam former, Adaptive beam former, Narrowband beam former, Wideband beam former

Unit 5: Case study: MIMO in LTE, Code words to layers mapping, Pre-coding for spatial multiplexing, Pre-coding for transmit diversity, Beam forming in LTE, Cyclic delay diversity based pre-coding, Pre-coding codebooks, Propagation Channels, Time & frequency channel dispersion, AWGN and multipath propagation channels, Delay spread values and time variations, Fast and slow fading environments, Complex baseband multipath channels, Narrowband and wideband channels, MIMO channel models

Unit 6: Channel Estimation, Channel estimation techniques, Estimation and tracking, Training based channel estimation, Blind channel estimation, Channel estimation architectures, Iterative channel estimation, MMSE channel estimation, Correlative channel sounding, Channel estimation in single carrier systems, Channel estimation for CDMA, Channel estimation for OFDM.

References:

Paper Code: MWMT-243
Paper: Programmable Networks - SDN, NFV

Course Outcomes: At the end of this course, students will be able to understand advanced concepts in Programmable Networks. Understand Software Defined Networking, an emerging Internet architectural framework. Implement the main concepts, architectures, algorithms, protocols and applications in SDN and NFV.

Syllabus Contents:

Unit 1: Introduction to Programmable Networks, History and Evolution of Software Defined Networking (SDN), Fundamental Characteristics of SDN, Separation of Control Plane and Data Plane, Active Networking.

Unit 2: Control and Data Plane Separation: Concepts, Advantages and Disadvantages, the basics of OpenFlow protocol.

Unit 6: Data Center Networks: Packet, Optical and Wireless Architectures, Network Topologies. Use Cases of SDNs: Data Centers, Internet Exchange Points, Backbone Networks, Home Networks, Traffic Engineering.

References:

Paper: Antennas and Radiating Systems Laboratory

Course Outcomes: At the end of this course, students will be able to determine specifications, design, construct and test antennas. Explore and use tools for designing, analyzing and testing antennas. These tools include Antenna design and analysis software, network analyzers, spectrum analyzers, and antenna pattern measurement techniques.

List of Assignments:

Simulation of half wave dipole antenna.

Simulation of change of the radius and length of dipole wire on frequency of resonance of antenna.

Simulation of quarter wave, full wave antenna and comparison of their parameters.

Simulation of monopole antenna with and without ground plane.

Study the effect of the height of the monopole antenna on the radiation characteristics of the antenna.

Simulation of a half wave dipole antenna array.

Study the effect of change in distance between elements of array on radiation pattern of dipole array.

Study the effect of the variation of phase difference 'beta' between the elements of the array on the radiation pattern of the dipole array.

Case study.
Semester III

Paper: Advanced Digital Signal Processing lab

Course Outcomes: At the end of this course, students will be able to
Design different digital filters in software
Apply various transforms in time and frequency
Perform decimation and interpolation

List of Assignments:

Basic Signal Representation
Correlation Auto And Cross Stability Using Hurwitz Routh Criteria
Sampling FFT Of Input Sequence Butterworth Low pass And High pass Filter Design
Cheby chev Type I,II Filter State Space Matrix from Differential Equation
Normal Equation Using Levinson Durbin Decimation And Interpolation Using Rationale Factors
Maximally Decimated Analysis DFT Filter Cascade Digital IIR Filter Realization
Convolution And M Fold Decimation &PSD Estimator Estimation Of PSD
Inverse Z Transform
Group Delay Calculation Separation Of T/F
Parallel Realization of IIR filter
Course Outcomes: At the end of this course, students will be able to Apply knowledge of mathematics, probability, and statistics to model and analyze some networking protocols. Design, implement, and analyze computer networks. Identify, formulate, and solve network engineering problems. Show knowledge of contemporary issues in high performance computer networks. Use techniques, skills, and modern networking tools necessary for engineering practice.

Syllabus Contents:

Unit 1: Types of Networks, Network design issues, Data in support of network design. Network design tools, protocols and architecture. Streaming stored Audio and Video, Best effort service, protocols for real time interactive applications, Beyond best effort, scheduling and policing mechanism, integrated services, and RSVP-differentiated services.

Unit 4: Traffic Modeling: Little’s theorem, Need for modeling, Poisson modeling, Non-poisson models, Network performance evaluation.

Unit 5: Network Security and Management: Principles of cryptography, Authentication, integrity, key distribution and certification, Access control and fire walls, attacks and counter measures, security in many layers.

References:

Paper Code: MWMT-352
Paper: Pattern Recognition and Machine Learning

Course Outcomes: At the end of this course, students will be able to Study the parametric and linear models for classification Design neural network and SVM for classification Develop machine independent and unsupervised learning techniques.

Syllabus Contents:

Unit 1
Introduction to Pattern Recognition: Problems, applications, design cycle, learning andadaptation, examples, Probability Distributions, Parametric Learning - Maximum likelihood and Bayesian Decision Theory- Bayes rule, discriminant functions, loss functions and Bayesian error analysis

Unit 2
Linear models: Linear Models for Regression, linear regression, logistic regression Linear Models for Classification

Unit 3
Neural Network: perceptron, multi-layer perceptron, back propagation algorithm, error surfaces, practical techniques for improving back propagation, additional networks and training methods, Ada boost, Deep Learning

Unit 4
Linear discriminant functions - decision surfaces, two-category, multi-category, minimum-squared error procedures, the Ho-Kashyap procedures, linear programming algorithms, Support vector machine

Unit 5
Algorithm independent machine learning – lack of inherent superiority of any classifier, bias and variance, re-sampling for classifier design, combining classifiers

Unit 6
Unsupervised learning and clustering – k-means clustering, fuzzy k-means clustering, hierarchical clustering

References:

Course Outcomes: At the end of this course, students shall be able to understand basic concepts, principles and applications of remote sensing, particularly the geometric and radiometric principles; provide examples of applications of principles to a variety of topics in remote sensing, particularly related to data collection, radiation, resolution, and sampling.

Syllabus Contents:

Unit 2: Data Acquisition: Types of Platforms-different types of aircrafts-Manned and Unmanned spacecrafts-sun synchronous and geo synchronous satellites-Types and characteristics of different platforms-LANDSAT,SPOT,IRS,INSAT,IKONOS,QUICKBIRD etc

Unit 3: Photographic products, B/W, color, color IR film and their characteristics-resolving power of lens and film -Opto mechanical electro optical sensors-across track and along track scanners-multispectral scanners and thermal scanners-geometric characteristics of scanner imagery-calibration of thermal scanners.

Unit 4: Scattering System: Microwave scatterometry, types of RADAR-SLAR-resolution-range and azimuth-real aperture and synthetic aperture RADAR. Characteristics of Microwave images topographic effect-different types of Remote Sensing platforms-airborne and space borne sensors-ERS, JERS, RADARSAT, RISAT-Scattero meter, Altimeter-LiDAR remote sensing, principles, applications.

Unit 5: Thermal And Hyper Spectral Remote Sensing: Sensors characteristics-principle of spectroscopy-imaging spectroscopy-field conditions, compound spectral curve, Spectral library, radiative models, processing procedures, derivative spectrometry, thermal remote sensing-thermal sensors, principles, thermal data processing, applications.

References:

(Dissertation) Dissertation Phase – I (MWMP-301) and Phase - II(MWMP-401)

Course Outcomes:

At the end of this course, students will be able to Ability to synthesize knowledge and skills previously gained and applied to an in-depth study and execution of new technical problem.

Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design. Ability to present the findings of their technical solution in a written report. Presenting the work in International/ National conference or reputed journals.

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following Relevance to social needs of society Relevance to value addition to existing facilities in the institute Relevance to industry need Problems of national importance Research and development in various domain The student should complete the following:

Literature survey Problem Definition Motivation for study and Objectives

Preliminary design / feasibility / modular approaches Implementation and Verification

Report and presentation

The dissertation stage II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

Experimental verification / Proof of concept.

Design, fabrication, testing of Communication System.

The viva-voce examination will be based on the above report and work.

Guidelines for Dissertation Phase – I and II

As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.

The dissertation may be carried out preferably in-house i.e. department’s laboratories and centers OR in industry allotted through department’s T & P coordinator.

After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred
literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, while papers, product catalogues should be referred and reported.

Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.

Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.

Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.

Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, A record of continuous progress.

Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work.
OPEN ELECTIVES
Business Analytics

Teaching scheme
Lecture: - 3 h/week

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Business Analytics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course objective
Understand the role of business analytics within an organization.
Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
To become familiar with processes needed to develop, report, and analyze business data.
Use decision-making tools/Operations research techniques.
Manage business process using analytical and management tools.
Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc.

Total Number of Lectures: 48

LECTURE WITH BREAKUP

Unit 1:
Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

Unit 2:
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression.

Unit 3:
Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes.
Descriptive Analytics, predictive analytics, predicative Modelling.
Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Unit 4:

Unit 5:

Unit 6:
Recent Trends in : Embedded and collaborative business intelligence, 4 Visual data recovery, Data Storytelling and Data journalism.

COURSE OUTCOMES

- Students will demonstrate knowledge of data analytics.
- Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
- Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making.
- Students will demonstrate the ability to translate data into clear, actionable insights.

Reference:

Business Analytics by James Evans, persons Education.
OPEN ELECTIVES

Industrial Safety

Teaching scheme
Lecture: 3 h/week

Unit-I: Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc. Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-II: Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-IV: Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Reference:

Maintenance Engineering, H. P. Garg, S. Chand and Company.
Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
OPEN ELECTIVES

Operations Research

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes: At the end of the course, the student should be able to Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.

Students should able to apply the concept of non-linear programming

Students should able to carry out sensitivity analysis

Student should able to model the real world problem and simulate it.

Syllabus Contents:

Unit 1:
Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit 2:
Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit 3:
Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit 4:
Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit 5:
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

References:

J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008

Pannerselvam, Operations Research: Prentice Hall of India 2010

Open Elective

Cost Management of Engineering Projects

Teaching scheme
Lecture: - 3 h/week

Introduction and Overview of the Strategic Cost Management Process

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

References:

Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi

Charles T. Horngren and George Foster, Advanced Management Accounting

Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting

Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher

N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.
Open Elective

Composite Materials

Teaching scheme
Lecture: - 3 h/week

UNIT–V: Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximumstrain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

References:

Open Elective

Waste to Energy

Teaching scheme
Lecture: - 3 h/week

Unit-I: Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Unit-IV: Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-V: Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

References:
AUDIT 1 and 2: ENGLISH FOR RESEARCH PAPER WRITING

Course objectives:
Students will be able to:
Understand how to improve your writing skills and level of readability
Learn about what to write in each section
Understand the skills needed when writing a Title

<table>
<thead>
<tr>
<th>Units</th>
<th>CONTENTS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>useful phrases, how to ensure paper is as good as it could possibly be the first-time submission</td>
<td>4</td>
</tr>
</tbody>
</table>

Suggested Studies:
AUDIT 1 and 2: DISASTER MANAGEMENT

Course Objectives: - Students will be able to:
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

<table>
<thead>
<tr>
<th>Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

SUGGESTED READINGS:
Sahni, PardeepEt.Al. (Eds.),” Disaster Mitigation Experiences And Reflections”, Prentice Hall Of India, New Delhi.
AUDIT 1 and 2: SANSKRIT FOR TECHNICAL KNOWLEDGE

Course Objectives

To get a working knowledge in illustrious Sanskrit, the scientific language in the world
Learning of Sanskrit to improve brain functioning
Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Order Introduction of roots Technical information about Sanskrit Literature</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics</td>
<td>8</td>
</tr>
</tbody>
</table>

Suggested reading

“Abhyaspustakam” – Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
“Teach Yourself Sanskrit” PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
“India’s Glorious Scientific Tradition” Suresh Soni, Ocean books (P) Ltd., New Delhi.

Course Output

Students will be able to
Understanding basic Sanskrit language
Ancient Sanskrit literature about science & technology can be understood
Being a logical language will help to develop logic in students
AUDIT 1 and 2: VALUE EDUCATION

Course Objectives
Students will be able to
1. Understand value of education and self-development
2. Imbibe good values in students
3. Let the should know about the importance of character

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values and self-development – Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non-moral valuation. Standards and principles. Value judgements</td>
<td>4</td>
</tr>
</tbody>
</table>

Suggested reading
1 Chakroborty, S.K. “Values and Ethics for organizations Theory and practice”, Oxford University Press, New Delhi

Course outcomes
Students will be able to
1. Knowledge of self-development
2. Learn the importance of Human values
3. Developing the overall personality
Course Objectives:
Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Syllabus

<table>
<thead>
<tr>
<th>Units</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>History of Making of the Indian Constitution:</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Drafting Committee, (Composition & Working)</td>
<td></td>
</tr>
<tr>
<td>Preamble</td>
<td>Philosophy of the Indian Constitution:</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Salient Features</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Contours of Constitutional Rights & Duties:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamental Rights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right to Equality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right to Freedom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right against Exploitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right to Freedom of Religion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cultural and Educational Rights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right to Constitutional Remedies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Directive Principles of State Policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamental Duties</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Organs of Governance:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parliament</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualifications and Disqualifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Powers and Functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Executive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>President</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Governor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Council of Ministers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Judiciary, Appointment and Transfer of Judges, Qualifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Powers and Functions</td>
<td></td>
</tr>
</tbody>
</table>
| | **Local Administration:**
| | District’s Administration head: Role and Importance,
| | Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.
| | Elected officials and their roles, CEO ZilaPachayat: Position and role.
| | Block level: Organizational Hierarchy (Different departments),
| | Village level: Role of Elected and Appointed officials,
| | Importance of grass root democracy |
| | **Election Commission:**
| | Election Commission: Role and Functioning.
| | Chief Election Commissioner and Election Commissioners.
| | State Election Commission: Role and Functioning.
| | Institute and Bodies for the welfare of SC/ST/OBC and women. |

Suggested reading

- The Constitution of India, 1950 (Bare Act), Government Publication.

Course Outcomes:

Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.
Audit 1 and 2: Pedagogy Studies

Course Objectives:

Students will be able to:

- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

<table>
<thead>
<tr>
<th>Units</th>
<th>Syllabus</th>
</tr>
</thead>
</table>
| **1** | **Introduction and Methodology:**
Aims and rationale, Policy background, Conceptual framework and terminology
Theories of learning, Curriculum, Teacher education.
Conceptual framework, Research questions.
Overview of methodology and Searching. | **4** |
| **2** | **Thematic overview:** Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.
Curriculum, Teacher education. | **2** |
| **3** | **Evidence on the effectiveness of pedagogical practices**
Methodology for the in depth stage: quality assessment of included studies.
How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
Theory of change.
Strength and nature of the body of evidence for effective pedagogical practices.
Pedagogic theory and pedagogical approaches.
Teachers’ attitudes and beliefs and Pedagogic strategies. | **4** |
| **4** | **Professional development: alignment with classroom practices and follow-up support**
Peer support
Support from the head teacher and the community.
Curriculum and assessment
Barriers to learning: limited resources and large class sizes | **4** |
| **5** | **Research gaps and future directions**
Research design
Contexts
Pedagogy
Teacher education
Curriculum and assessment
Dissemination and research impact. | **2** |
Suggested reading

Course Outcomes:

Students will be able to understand:

What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
AUDIT 1 and 2: STRESS MANAGEMENT BY YOGA

Course Objectives
To achieve overall health of body and mind
To overcome stress

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definitions of Eight parts of yog. (Ashtanga)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Yam and Niyam. Do’s and Don'ts in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Asan and Pranayam i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects - Types of pranayam</td>
<td>8</td>
</tr>
</tbody>
</table>

Suggested reading
‘Yogic Asanas for Group Training-Part-I’ : Janardan Swami YogabhyasiMandal, Nagpur
“Rajayoga or conquering the Internal Nature” by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

Course Outcomes:
Students will be able to:
Develop healthy mind in a healthy body thus improving social health also

 Improve efficiency
AUDIT 1 and 2: PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

Course Objectives
To learn to achieve the highest goal happily
To become a person with stable mind, pleasing personality and determination
To awaken wisdom in students

Syllabus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neetisatakam-Holistic development of personality Verses- 19,20,21,22 (wisdom) Verses- 29,31,32 (pride & heroism) Verses- 26,28,63,65 (virtue) Verses- 52,53,59 (dont’s) Verses- 71,73,75,78 (do’s)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Statements of basic knowledge. ShrimadBhagwadGeeta: Chapter2-Verses 56, 62, 68 Chapter 12 -Verses 13, 14, 15, 16,17, 18 Personality of Role model. ShrimadBhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39 Chapter18 – Verses 37,38,63</td>
<td>8</td>
</tr>
</tbody>
</table>

Suggested reading
“Srimad Bhagavad Gita” by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Outcomes
Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students.