Uttarakhand Technical University, Dehradun

Scheme of Examination as per AICTE Flexible Curricula

Evaluation Scheme & Syllabus

I Year (Common to All Branches)

W.E.F. Academic Session 2019-20
Uttarakhand Technical University, Dehradun

New Scheme of Examination as per AICTE Flexible Curricula

Bachelor of Technology (B. Tech.) I Year

W.E.F. Academic Session - 2019-20

I Semester - GROUP A: (Branches for Group “A” to be decided by the Institutes)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Category</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Contact Hours per week</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem.</td>
<td>Quiz/Assignment</td>
</tr>
<tr>
<td>1.</td>
<td>BAST 101</td>
<td>BSC-1</td>
<td>Engineering Chemistry</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>BAST 102</td>
<td>BSC-2</td>
<td>Mathematics-I</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>BAST 103</td>
<td>HSMC-1</td>
<td>English for Communications</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>BEET 101</td>
<td>ESC-1</td>
<td>Basic Electrical & Electronics Engineering</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>BCST 101</td>
<td>ESC-6</td>
<td>Fundamentals of Computers & Programming in C</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>BMEP 101</td>
<td>ESC-3</td>
<td>Manufacturing Practices / Workshop</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>BASP 102</td>
<td>DLC-1</td>
<td>Internship-I (60 Hrs Duration) at the Institute level</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>BASP 105</td>
<td>DLC-2</td>
<td>Swachh Bharat Summer Internship Unnat Bharat Abhiyan (100Hrs)/ Rural Outreach</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Total 500 150 100 150 100 1000 16 4 10 25

*It is non credit course. Student must clear it to be promoted in II Year; Marks will not be added to the total

Note: The Meaning of last Character of Subject Code (T – Theory and P – Practical)
Uttarakhand Technical University, Dehradun

New Scheme of Examination as per AICTE Flexible Curricula

Bachelor of Technology (B. Tech.) I Year

W.E.F. Academic Session - 2019-20

I Semester - GROUP B: (Branches for Group “B” to be decided by the Institutes)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Category</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End Slot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mid Slot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quiz/Assignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End Slot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lab work & Sessional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BAST 104</td>
<td>BSC-3</td>
<td>Engineering Physics</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BASP 104</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 1 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>BAST 102</td>
<td>BSC-2</td>
<td>Mathematics-I</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 1 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>BMET 102</td>
<td>ESC-4</td>
<td>Basic Mechanical Engineering</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BMEP 102</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 1 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BCET 101</td>
<td>ESC-5</td>
<td>Basic Civil Engineering & Mechanics</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BCEP 101</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 1 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>BMEP 103</td>
<td>ESC-2</td>
<td>Engineering Graphics</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>BASP 106</td>
<td>HSMC-2</td>
<td>Language Lab & Seminars</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BEST 101</td>
<td>BSC</td>
<td>Environmental Studies</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Credit Course. Student must clear it to complete the degree.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 (Field & Project Work)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>BASP 102</td>
<td>DLC-1</td>
<td>Internship-I - (60 Hrs Duration) at the Institute level</td>
<td>To be completed during first/second semester. Its evaluation/credit to be added in third semester.</td>
<td>23</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>17</th>
<th>4</th>
<th>10</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>470</td>
<td>120</td>
<td>80</td>
<td>190</td>
<td>140</td>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The Meaning of last Character of Subject Code (T – Theory and P – Practical)
Uttarakhand Technical University, Dehradun
New Scheme of Examination as per AICTE Flexible Curricula
Bachelor of Technology (B. Tech.) I Year
W.E.F. Academic Session - 2019-20

II Semester - GROUP A: (Branches for Group “A” to be decided by the Institutes)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Category</th>
<th>Subject Name</th>
<th>Maximum Marks Allocated</th>
<th>Contact Hours per week</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem</td>
<td>Quiz/ Assignment</td>
</tr>
<tr>
<td>1.</td>
<td>BAST 104</td>
<td>BSC-3</td>
<td>Engineering Physics</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>BAST 105</td>
<td>BSC-4</td>
<td>Mathematics-II</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>BMET 102</td>
<td>ESC-4</td>
<td>Basic Mechanical Engineering</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>BCET 101</td>
<td>ESC-5</td>
<td>Basic Civil Engineering & Mechanics</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>BMEP 103</td>
<td>ESC-2</td>
<td>Engineering Graphics</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>BASP 106</td>
<td>HSMC-2</td>
<td>Language Lab & Seminars</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>BEST 101</td>
<td>BSC</td>
<td>Environmental Studies</td>
<td>70</td>
<td>Not Credit Course. Student must clear it to complete the degree.</td>
<td>30</td>
</tr>
<tr>
<td>8.</td>
<td>BASP 102</td>
<td>DLC-1</td>
<td>Internship-I - (60 Hrs Duration) at the Institute level</td>
<td></td>
<td>To be completed during first/second semester. Its evaluation/credit to be added in third semester.</td>
<td></td>
</tr>
</tbody>
</table>

Total: 470 120 80 190 140 1000 17 4 10 23

Note: The Meaning of last Character of Subject Code (T – Theory and P – Practical)
Uttarakhand Technical University, Dehradun
New Scheme of Examination as per AICTE Flexible Curricula
Bachelor of Technology (B. Tech.) I Year
W.E.F. Academic Session - 2019-20

II Semester - GROUP B: (Branches for Group “B” to be decided by the Institutes)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Category</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Contact Hours per week</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 Hr Lecture</td>
<td>1 Hr Tutorial</td>
</tr>
</tbody>
</table>

1.	BAST 101	BSC-1	Engineering Chemistry	100	30	20	30	20	200	3	1	2	5
2.	BAST 105	BSC-4	Mathematics-II	100	30	20	-	-	150	3	1	-	4
3.	BAST 103	HSMC-1	English for Communication	100	30	20	30	20	200	3	-	2	4
4.	BEET 101	ESC-1	Basic Electrical & Electronics Engineering	100	30	20	30	20	200	3	1	2	5
5.	BCST 101	ESC-6	Fundamentals of Computers & Programming in C	100	30	20	30	20	200	3	1	2	5
6.	BMEP 101	ESC-3	Manufacturing Practices / Workshop	-	-	-	30	20	100	1	-	2	2

Notes:
- Mandatory Induction Program (First three weeks): Physical Activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Dept./Branch & Innovations
- Fourth week onwards classes will start
- 7th Week: Internship-I (60 Hrs Duration) at the Institute level
- 8th Week: Swachh Bharat Summer Internship/Unnat Bharat Abhiyan (100Hrs)/ Rural Outreach

*It is non credit course. Student must clear it to be promoted in II Year; Marks will not be added to the total

Note: The Meaning of last Character of Subject Code (T – Theory and P – Practical)
Course Contents:

Periodic Properties (5 Lectures)

Phase equilibrium (5 Lectures)
Gibbs Phase Rule, Phase diagram of single component system (Water & Sulphur) Phase diagram of Binary Eutectic System (Cu-Ag.)

Water Analysis - (8 Lectures)
Soft and Hard Water, Degree of Hardness, Determination of hardness by EDTA method (related numerical problems), Softening methods (Lime-Soda, Zeolite and Ion Exchange Methods), Alkalinity & Its determination.
Boiler Feed Water, Sludge & Scale, Priming & Foaming, Boiler Corrosion, Caustic Embrittlement.

Polymers (8 Lectures)
Introduction, Types of polymerization, Classification, Thermoplastic & Thermosetting polymers Elementary idea of Biodegradable polymers, Conducting Polymers & Nano Particles, Preparation, properties & uses of the following polymers - PVC, PMMA, Teflon, Nylon 6, Nylon 6:6, Polyester & Bakelite, Rubbers, Vulcanization of Rubber.

Corrosion (4 Lectures):

Lubricants (6 Lectures)
Introduction, Mechanism of lubrication, Classification of lubricants, significance & determination of Viscosity and Viscosity Index, Flash & Fire Points, Cloud & Pour Points, Aniline & Mixed Aniline Points, Acid Number, Saponification Number.

Spectroscopic techniques and application (4 Lectures)
Principle and Applications of UV – visible, IR, Raman & NMR, Spectroscopy.

Course Outcomes
The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications.
Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:
- Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
- Rationalise bulk properties and processes using thermodynamic considerations.
- Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.
- Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.
- List major chemical reactions that are used in the synthesis of molecules.

Practical List
NOTE: Choice of 10-12 experiments of the following core experiments must be performed during the session.

1. Determination of hardness of water using EDTA method (Complexometric Titration).
2. Determination of alkalinity of water.
3. Determination of chloride content of water (Mohr’s Method)
4. Determination of viscosity of unknown sample using Ostwald’s viscometer
5. Determination of surface tension of unknown sample using stalagmometer.
6. Determination of saponification value of oil sample
7. Determination of acid value of oil sample
11. Determination of ash content in a coal sample.
12. Separation of binary mixture by thin layer chromatography.
15. Determination of percentage purity of ferrous ammonium sulphate and copper sulphate.
16. Chemical analysis of salt (mixture of one acidic and one basic radical)

Reference Books:

2. Fundamental of Molecular Spectroscopy C.N. Banwell, McGraw Hill Education
6. Elementary Spectroscopy, Y .R. Sharma, S. Chand Publishing
8. Advanced Inorganic Chemistry, G.R. Chatwal, Goal Publishing house
10. Advanced Physical Practical Chemistry by JB Yadav.
OBJECTIVES: The objective of this course is to familiarize the prospective engineers with techniques in calculus, multivariate analysis and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. More precisely, the objectives are:

To introduce the idea of applying differential and integral calculus to notions of curvature and to improper integrals. Apart from some applications it gives a basic introduction on Beta and Gamma functions.
To introduce the fallouts of Rolle’s Theorem that is fundamental to application of analysis to Engineering problems.
To familiarize the student with functions of several variables that is essential in most branches of engineering.
To develop the essential tool of vector spaces, matrices and linear algebra in a comprehensive manner.

Course Contents:

Module 1: Calculus: (10 hours): Rolle’s theorem, Mean Value theorems, Expansion of functions by Maclaurin’s and Taylor’s for one variable; Taylor’s theorem for function of two variables, Partial Differentiation, Maxima & Minima (two and three variables), Method of Lagranges Multipliers.

Module 2: Calculus: (8 hours): Definite Integral as a limit of a sum and Its application in summation of series; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. Multiple Integral, Change the order of the integration.

Module 3: Vector Calculus : (10 hours) : Differentiation of Vectors, Scalar and vector point function, Gradient, Geometrical meaning of gradient, Directional Derivative, Divergence and Curl, Line Integral, Surface Integral and Volume Integral, Gauss Divergence, Stokes and Green theorems (without proof).

Module 4: Vector Spaces (6 hours): Vector Space, Vector Sub Space, Linear Combination of Vectors, Linearly Dependent, Linearly Independent, Basis of a Vector Space, Linear Transformations.

Module 5: Matrices (6 hours): Rank of a Matrix, Solution of Simultaneous Linear Equations by Elementary Transformation, Consistency of Equation, Eigen Values and Eigen Vectors, Diagonalization of Matrices, Cayley-Hamilton theorem and its applications to find inverse.

Textbooks/References:
COURSE CONTENTS:

Unit-I
Identifying Common errors in writing:Articles, Subject-Verb Agreement, Prepositions, Active and Passive Voice, Reported Speech: Direct and Indirect, Sentence Structure.

Unit-II
Vocabulary building and Comprehension:
Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives, synonyms, antonyms, Reading comprehension.

Unit-III
Communication:
Introduction, Meaning and Significance, Process of Communication, Oral and Written Communication, 7 c’s of Communication, Barriers to Communication and Ways to overcome them, Importance of Communication for Technical students, nonverbal communication.

Unit-IV
Developing Writing Skills:

Unit-V
Business Correspondence:
Importance of Business Letters, Parts and Layout; Application, Contents of good Resume, guidelines for writing Resume, Calling/ Sending Quotation, Order, Complaint, E-mail and Tender.

Books Recommended:
2. ‘Effective Business Communication’, Krizan and merrier (Cengage learning)
3. ‘Communication Skill, Sanjay Kumar and pushlata, OUP2011

Course Outcomes:
The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

Communicative Language Laboratory:
Course objective: The language laboratory focuses on the practice of English through audio-visual aids and Computer software. It intends to enable the students to speak English correctly with confidence and intends to help them to overcome their inhibitions and self -consciousness while speaking in English.

Topics to be covered in the Language laboratory sessions:
1. Listening Comprehension.
2. Pronunciation, Intonation, Rhythm
3. Practising everyday dialogues in English
4. Interviews.
5. Formal Presentation

Final Assessment should be based on assignment, assessment, presentation and interview of each candidate.
Course outcomes:
The final outcome of the subject will result into an enhancement in understanding the basic
concepts of Core Electrical Engineering subjects.
The topics covered under this subject will help to enhance the basic understanding of Electrical
machines and power systems and basic electronics.

Course Contents:

Unit- I:
D.C. Circuits: Voltage and current sources, dependent and independent sources, Units and
dimensions, Source Conversion, Ohm’s Law, Kirchhoff’s Law, Superposition theorem, Thevenin’s
theorem and their application for analysis of series and parallel resistive circuits excited by
independent voltage sources, Power & Energy in such circuits. Mesh & nodal analysis, Star Delta
transformation & circuits.

Unit – II:
Single - phase AC Circuits: Generation of sinusoidal AC voltage, definition of average value,
R.M.S. value, form factor and peak factor of AC quantity , Concept of phasor, Concept of Power
factor, Concept of impedance and admittance, Active, reactive and apparent power, analysis of
R-L, R-C, R-L-C series & parallel circuit
Three - phase AC Circuits: Necessity and advantages of three phase systems, Meaning of Phase
sequence, balanced and unbalanced supply and loads. Relationship between line and phase values
for balanced star and delta connections. Power in balanced & unbalanced three-phase system and
their measurements

Unit – III : Magnetic Circuits: Basic definitions, magnetization characteristics of Ferro magnetic
materials, self inductance and mutual inductance, energy in linear magnetic systems, AC excitation
in magnetic circuits, magnetic field produced by current carrying conductor, Force on a current
carrying conductor.

UNIT IV: Electrical Machines - Introduction and working of DC, AC, 3 Phase AC Motors
Transformers – introduction, types and working

Unit V: Semiconductor Devices
Introduction to Semiconductors, Diodes, V-I characteristics, Bipolar junction transistors (BJT) and
their working, introduction to CC, CB & CE transistor configurations, different configurations and
modes of operation of BJT, MOSFET

List of experiments/demonstrations:
1. Basic safety precautions. Introduction and use of measuring instruments – voltmeter, ammeter,
 multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.
3. Sinusoidal steady state response of R-L, and R-C circuits – impedance calculation and
 verification. Observation of phase differences between current and voltage. Resonance in R-L-
 C circuits.
4. Verification of theorems
5. Load test on single phase Transformer
6. Starting and reversal of 3 phase induction motor
7. Study of V-I Characteristics of Diode.
8. Applications of Diode as rectifier.
9. Transistor applications as amplifier and switch.

References
2. S.N. Singh , Basic Electrical Engineering, P.H.I.,2013
5. C.L. Wadhwa, Basic Electrical Engineering, New Age International.
7. E. Hughes & I.M. Smith Hughes Electrical Technology Pearson
8. Vincent Del Toro Electrical Engineering Fundamentals
BMET 105
Engineering Graphics
1L-0T-2P
2 Credits

Course Objective:
All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical, architectural and industrial) in which the skills of the CAD technicians play major roles in the design and development of new products or construction. Students prepare for actual work situations through practical training in a new state-of-the-art computer designed CAD laboratory using engineering software. This course is designed to address:

• to prepare you to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
• to prepare you to communicate effectively
• to prepare you to use the techniques, skills, and modern engineering tools necessary for engineering practice

Goals & Outcomes:
• Introduction to engineering design and its place in society
• Exposure to the visual aspects of engineering design
• Exposure to engineering graphics standards
• Exposure to solid modeling
• Exposure to computer-aided geometric design
• Exposure to creating working drawings
• Exposure to engineering communication

Course Contents:

UNIT 2: Projection of lines inclined to both planes; vertical and horizontal traces. Projections of planes - Auxiliary Planes; Projections of Regular Solids in simple position, projection of solids with base on ground and axis perpendicular to HP, Projection of solids with axis parallel to both the principal planes. Projection of solids inclined to both the Planes - Auxiliary Views; Draw simple annotation, dimensioning.

UNIT 3: Sections and Sectional Views of Right Angular Solids covering, Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Frustums and truncated solids. Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only) . Isometric Projections covering, Principles of Isometric projection – Isometric Scale, Isometric Views, Isometric axes, Conventions; Isometric Views of solids, Box method, coordinate method, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

UNIT 4: Introduction of CAD in engineering drawing. Overview of Computer Graphics covering, listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area
(Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable),

UNIT 5: Customization & CAD Drawing consisting of set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits Applying various ways of drawing circles; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing of lines, circles, polygons using CAD technique. Introduction of solids. Multi views.

Text/Reference Books:
4. (Corresponding set of) CAD Software Theory and User Manuals
Course Objective:

Manufacturing is fundamental to the development of any engineering product. The course on Engineering Workshop Practice is intended to expose engineering students to different types of manufacturing / fabrication processes, dealing with different materials such as metals, ceramics, plastics, wood, glass etc. While the actual practice of fabrication techniques is given more weightage, some lectures and video clips available on different methods of manufacturing are also included.

Course Outcomes:
At the end of this course, students will demonstrate the ability to
- Understanding different manufacturing techniques and their relative advantages/disadvantages with respect to different applications.
- Selection of a suitable technique for meeting a specific fabrication need.
- Acquire a minimum practical skill with respect to the different manufacturing methods and develop the confidence to design & fabricate small components for their project work and also to participate in various national and international technical competitions.
- Introduction to different manufacturing methods in different fields of engineering.
- Practical exposure to different fabrication techniques.
- Creation of simple components using different materials.
- Exposure to some of the advanced and latest manufacturing techniques being employed in the industry.

Course Contents:

Lectures & videos: (10 hours)
1. Manufacturing Methods- casting, forming, machining, joining, Introduction to Lathe, Drilling etc. (3 lectures)
2. CNC machining, Additive manufacturing (1 lecture)
3. Fitting operations & power tools (1 lecture)
4. Electrical & Electronics (1 lecture)
5. Carpentry (1 lecture)
6. Plastic moulding, glass cutting (1 lecture)
7. Metal casting (1 lecture)
8. Welding (arc welding & gas welding), brazing (1 lecture)

(ii) Workshop Practice:(60 hours)
1. Machine shop (10 hours)
2. Fitting shop (8 hours)
3. Carpentry (6 hours)
4. Electrical & Electronics- Soldering, Brazing, Winding etc.(8 hours)
5. Welding shop (8 hours Arc welding 4 hrs + gas welding 4 hrs)
6. Casting (8 hours)
7. Smithy (6 hours)
8. Plastic moulding/ Glass Cutting/ Sheet Metal Shop (6 hours)

Note: Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.
Laboratory Outcomes

- Upon completion of this laboratory course, students will be able to fabricate components with their own hands.
- They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.
- By assembling different components, they will be able to produce small devices of their interest.
Course Contents:

Module 1: Wave nature of particles and the Schrodinger equation (8 lectures)

Introduction to Quantum mechanics, Wave nature of Particles, Free-particle wave function and wave-packets, Group Velocity and Phase Velocity and relation, Uncertainty principle, wave function, Born interpretation of wave function, operators, Time-dependent and time-independent Schrodinger equation for wave function, Application: Particle in a One-dimensional Box.

Module 2: Wave optics (8 lectures)

Huygens’ principle, superposition of waves and interference of light by wave front splitting and amplitude splitting; Young’s double slit experiment, Newton’s rings, Michelson interferometer, Mach- Zehnder interferometer.

Fraunhofer diffraction from a single slit and a circular aperture, the Rayleigh criterion for limit of resolution and its application to vision; Diffraction gratings and their resolving power.

Module 3: Introduction to solids (8 lectures)

Free electron theory of metals, Fermi level of Intrinsic and extrinsic, density of states, Bloch’s theorem for particles in a periodic potential. V-I characteristics of PN junction, Zener diode, Solar Cell, Hall Effect, concept of zero resistivity and superconductivity, Meissner effect, Type - I and Type - II superconductors, applications of superconductivity.

Module 4: Lasers (8 lectures)

Einstein’s theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion, different types of lasers: gas lasers (He-Ne, CO₂), solid-state lasers (ruby, Neodymium), Properties of laser beams: mono-chromaticity, coherence, directionality and brightness, laser speckles, applications of lasers in science, engineering and medicine. Introduction to Optical fiber, acceptance angle and cone, Numerical aperture, V number, attenuation.

Module 5: Electrostatics in vacuum (8 lectures)

Gradient, Divergence and curl, Stokes’ theorem, Gauss Theorem, Calculation of electric field and electrostatic potential for a charge distribution; Electric displacement, Basic Introduction to Dielectrics, Continuity equation for current densities; Maxwell’s equation in vacuum and non-conducting medium; Poynting vector.

List of Experiment*

1. To determine the dispersive power of prism.
2. To determine the wave length of sodium light with the help of newton’s Ring.
4. YDSE (Young’s double slit Experiment).
5. To determine the frequency of AC mains supply.
7. To determine the wave length of diode loses by single slit diffraction.
8. To determine the plank’s constant with the help of photocell.
9. Hall’s effect experiment.
11. To study the effect of temperature on reverse saturation current in P-N junction diode and to determine the energy band gap.
12. To determine the wave length of sodium by using plane diffraction grating.
13. To determine the prominent lines of mercury source by plane diffraction grating.
14. To determine the numerical aperture of an optical fiber.
15. To determine wave length of given laser by plane diffraction grating.
16. To determine the variation of magnetic field along the axis of current carrying circular coil and the estimation the radius of coil. 1. To determine the resistivity and band gap by four probe method.
17. Use of Michelson-Morley interferometer for determining the wavelength of He-Ne laser
18. To determine the specific rotation of sugar solution using Loren’s half shade polarimeter.
19. To calculate the dielectric constant of the given dielectric material.
20. To find the capacitance and permittivity of the given material.
21. Measurement of length (or diameter) using vernier calliper, screw gauge and travelling microscope
22. To determine g by bar pendulum and Kater’s pendulum.
23. To determine g and velocity for a freely falling using digital timing technique.
24. To study the motion of a spring and calculate (a) spring constant (b) value of g
25. To determine the height of an object using a sextant.
26. Determination of the value of e/m of an electron by helical method/ Thomson method.

* Minimum 15 experiment are mandatory to perform out of above list of experiments as well other than these experiments 3-4 more experiments can be considered as per their availability

Suggested Reference Books

1. A. Ghatak, Optics.
2. O. Svelto, Principles of Lasers.
3. David Griffiths, Introduction to Electrodynamics.
4. D.J. Griffiths, Quantum Mechanics.
6. HC Verma, Quantum Physics
7. MN Avdhanulu, PG Kshirsagar et al, Engineering Physics
OBJECTIVES: The objective of this course is to familiarize the prospective engineers with techniques in Ordinary and partial differential equations, complex variables and vector calculus. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines. More precisely, the objectives are:

➢ To introduce effective mathematical tools for the solutions of ordinary and partial differential equations that model physical processes.
➢ To introduce the tools of differentiation and integration of functions of complex variable that are used in various techniques dealing engineering problems.
➢ To acquaint the student with mathematical tools available in vector calculus needed various field of science and engineering.
➢ To develop the tool of Series and Fourier series for learning advanced Engineering Mathematics.

Course Contents:

Module 1: Ordinary Differential Equations I : (8 hours): Differential Equations of First Order and First Degree (Leibnitz linear, Bernoulli’s, Exact), Differential Equations of First Order and Higher Degree, Higher order differential equations with constants coefficients, Homogeneous Linear differential equations, Simultaneous Differential Equations.

Module 2: Ordinary differential Equations II: (8 hours): Second order linear differential equations with variable coefficients, Method of variation of parameters, Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties.

Module 4: Sequences and series: (8 hours): Convergence of sequence and series, tests for convergence; Comparison Test; Ratio Test; D’Alembert’s Ratio Test, Raabe’s Test, Logarithmic Test, Cauchy Root Test, Weierstrass M Test; Alternating Series, Uniform Conversions, Fourier series: Half range sine and cosine series, Parseval’s theorem.

Module 5: Functions of Complex Variable : (8 hours): Functions of Complex Variables: Analytic Functions, Harmonic Conjugate, Cauchy-Riemann Equations (without proof), Line Integral, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Singular Points, Poles & Residues, Residue Theorem, Application of Residues theorem for Evaluation of Real Integral (Unit Circle).

Textbooks/References:
Course Contents:

Unit I:
Materials: Classification of engineering material, Composition of Cast iron and Carbon steels, Iron Carbon diagram. Alloy steels their applications. Mechanical properties like strength, hardness, toughness, ductility, brittleness, malleability etc. of materials. Tensile test- Stress-strain diagram of ductile and brittle materials. Hooks law and modulus of elasticity, Hardness and Impact testing of materials, BHN etc.

Unit II:
Measurement: Concept of measurements, errors in measurement, Temperature, Pressure, Velocity, Flow strain, Force and torque measurement, Vernier caliper, Micrometer, Dial gauge, Slip gauge, Sine-bar and Combination set.

Unit III:
Fluids: Fluid properties pressure, density and viscosity etc. Types of fluids, Newton’s law of viscosity, Pascal’s law, Bernoulli’s equation for incompressible fluids, Only working principle of Hydraulic machines, pumps, turbines, Reciprocating pumps.

Unit IV:
Thermodynamics: Thermodynamic system, properties, state, process, Zeroth, First and second law of thermodynamics, thermodynamic processes at constant pressure, volume, enthalpy & entropy.

Steam Engineering: Classification and working of boilers, mountings and accessories of boilers, steam properties, use of steam tables, p-v, T-S diagram

Unit V:
Reciprocating Machines:

Reference Books:
2. Nakra & Chaudhary, Instrumentation and Measurements, TMH.
3. Nag P.K, Engineering Thermodynamics, TMH.
4. Ganesan, Internal Combustion Engines, TMH.
6. Achuthan M, Engineering Thermodynamics, PHI.

List of Suggestive Core Experiments:
Theory related Eight to Ten experiments including core experiments as follows:
2. Linear and Angular measurement using, Micrometer, Slip Gauges, Dial Gauge and Sine-bar.
5. Verification of Bernoulli’s Theorem.
6. Study of various types of Boilers.
7. Study of different IC Engines.
8. Study of different types of Boilers Mountings and accessories.
Course Contents:

Unit I Building Materials & Construction
Stones, bricks, cement, lime, timber-types, properties, test & uses, laboratory tests concrete and mortar Materials: Workability, Strength properties of Concrete, Nominal proportion of Concrete preparation of concrete, compaction, curing.
Elements of Building Construction, Foundations conventional spread footings, RCC footings, brick masonry walls, plastering and pointing, floors, roofs, Doors, windows, lintels, staircases – types and their suitability

Unit II Surveying & Positioning:
Introduction to surveying Instruments – levels, thedolites, plane tables and related devices. Electronic surveying instruments etc. Measurement of distances – conventional and EDM methods, measurement of directions by different methods, measurement of elevations by different methods. Reciprocal leveling.

Unit III Mapping & sensing:
Mapping details and contouring, Profile Cross sectioning and measurement of areas, volumes, application of measurements in quantity computations, Survey stations, Introduction of remote sensing and its applications.

Engineering Mechanics

Unit IV

Unit – V

List of Experiments:

Students are expected to perform minimum ten experiments from the list suggested below by preferably selecting experiments from each unit of syllabus.

1. To perform traverse surveying with prismatic compass, check for local attraction and determine corrected bearings and to balance the traverse by Bowditch’s rule.
2. To perform leveling exercise by height of instrument of Rise and fall method.
3. To measure horizontal and vertical angles in the field by using Theodolite.
4. To determine (a) normal consistency (b) Initial and Final Setting time of a cement Sample.
5. To determine the workability of fresh concrete of given proportions by slump test or compaction factor test.
6. To determine the Compressive Strength of brick.
7. To determine particle size distribution and fineness modulus of course and fine Aggregate.
8. To verify the law of Triangle of forces and Lami’s theorem.
9. To verify the law of parallelogram of forces.
10. To verify law of polygon of forces
11. To find the support reactions of a given truss and verify analytically.
12. To determine support reaction and shear force at a given section of a simply Supported beam and verify in analytically using parallel beam apparatus.
13. To determine the moment of inertia of fly wheel by falling weight method.
14. To verify bending moment at a given section of a simply supported beam.

Reference Books:
1. S. Ramamrutam & R.Narayanan; Basic Civil Engineering, Dhanpat Rai Pub.
4. Shesha Prakash and Mogaveer; Elements of Civil Engg & Engg. Mechanics; PHI
9. Global Positioning System Principles and application- Gopi, TMH
Course Objective
1. To learn basics of computers
2. To learn basics of Operating System
3. To learn basics of C Language
4. To learn basics of Programming

Course Outcomes:
1. The student will learn to formulate simple algorithms for arithmetic and logical problems.
2. To translate the algorithms to programs (in C language).
3. To test and execute the programs and correct syntax and logical errors.
4. To implement conditional branching, iteration and recursion.
5. To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
6. To use arrays, pointers and structures to formulate algorithms and programs.
7. To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.
8. To apply programming to solve simple numerical method problems, namely root finding of function, differentiation of function and simple integration

Detailed Contents

Module I
Introduction to Programming - Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.)
Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm Flowchart/Pseudocode with examples.
From algorithms to programs: source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code

Module II
Arithmetic expressions and precedence, Conditional Branching and Loops, Writing and evaluation of conditionals and consequent branching, Iteration and loops,
Arrays - Arrays (1-D, 2-D), Character arrays and Strings

Module III
Basic Algorithms - Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)
Function - Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Module IV
Recursion - Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.
Structure - Structures, Defining structures and Array of Structures

Module V
Pointers - Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)
File handling - (only if time is available, otherwise should be done as part of the lab)
Experiments
The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Tutorial 1: Problem solving using computers:
Lab 1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:
Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:
Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:
Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:
Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings
Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:
Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):
Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls
Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation
Lab 11: Pointers and structures

Tutorial 12: File handling:
Lab 12: File operations Laboratory

Suggested Text Books

Reference Books
13. WAP to illustrate constructor & Destructor
14. WAP to illustrate Object and classes.
15. WAP to illustrate Operator overloading
16. WAP to illustrate Function overloading
17. WAP to illustrate Derived classes & Inheritance
18. WAP to insert and delete and element from the Stack
19. WAP to insert and delete and element from the Queue
20. WAP to insert and delete and element from the Linked List

Recommended Text Books:

1. Fundamentals of Computers: E Balagurusamy, TMH
2. Basic Computer Engineering: Silakari and Shukla, Wiley India
3. Fundamentals of Computers: V Rajaraman, PHI
4. Information Technology Principles and Application: Ajoy Kumar Ray & Tinku Acharya PHI.

Recommended Reference Books:

1. Introduction of Computers: Peter Norton, TMH
2. Object Oriented Programming with C++ :E.Balagurusamy, TMH
3. Object Oriented Programming in C++: Rajesh K.Shukla, Wiley India
5. Operating Systems – Silberschatz and Galvin - Wiley India
6. Computer Networks:Andrew Tananbaum, PHI
7. Data Base Management Systems, Korth, TMH
Course objective: This course intends to impart practical training in the use of English Language for Communicative purposes and aims to develop students’ personality through language Laboratory.

Topics to be covered in the Language laboratory sessions:

1. Introducing oneself, family, social roles.
2. Public Speaking and oral skills with emphasis on conversational practice, extempore speech, JAM (Just a minute sessions), describing objects and situations, giving directions, debate, telephonic etiquette.
3. Reading Comprehension: Intensive reading skills, rapid reading, and reading aloud (Reading material to be selected by the teacher).
4. To write a book review. Standard text must be selected by the teacher.
5. Role plays: preparation and delivery topic to be selected by teacher/faculty.
AS Per UGC Syllabus

Total Marks - 100

The structure of the question paper and Marks Distribution:

University Examination
 Part A - Short answer pattern - 20 marks
 Part B - Essay type with inbuilt choice - 50 marks

Internal Evaluation at Institute Level
 Part C - Field & Project Work - 30 marks

AIM of Environmental Studies Subject

The aim of E.V.S. (environmental studies) is to develop a world population that is aware of and concerned about the environment and its associated problems and which has the knowledge, skills, attitudes, motivations and commitment to work individually and collectively towards solutions of current problems and prevention of new ones. In view of this aim, environmental studies should form an integral part of the educational process, be centered in practical problems and be of an interdisciplinary/multidisciplinary character.

OBJECTIVES of Environmental Studies Subject

- Awareness: To help social groups and individuals acquire awareness of and sensitively to the total environment and its allied problems.
- Knowledge: To help social groups and individuals gain a variety of experiences and acquire a basic understanding of environment and its associated problems.
- Attitudes: To help social groups and individuals acquire a set of values and feelings of concern for environment.
- Skills: To help the individuals in acquiring skills for identifying and solving environmental problems.
- Participation: To provide social groups and individuals with an opportunity to be actively involved at all levels in working towards the resolution of environmental problems.

Detailed Content

Unit I –

Introduction: Introduction to environmental studies, Multidisciplinary nature of environmental studies; Scope and importance; the need for environmental education. Concept of sustainability and sustainable development.

Natural Resources:

Renewable and non-renewable resources: Natural resources and associated problems.
- Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.
- Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
• Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
• Role of an individual in conservation of natural resources.
• Equitable use of resources for sustainable lifestyles.

Unit II: Ecosystems:

• Concept of an ecosystem.
• Structure and function of an ecosystem.
• Producers, consumers and decomposers.
• Energy flow in the ecosystem.
• Ecological succession.
• Food chains, food webs and ecological pyramids.
• Introduction, types, characteristic features, structure and function of the following ecosystem:
 o Forest ecosystem
 o Grassland ecosystem
 o Desert ecosystem
 o Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit III: Biodiversity and Conservation

• Introduction – Definition: genetic, species and ecosystem diversity.
• Biogeographical classification of India
• Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values
• Biodiversity at global, National and local levels.
• India as a mega-diversity nation
• Hot-spots of biodiversity.
• Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
• Endangered and endemic species of India
• Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Unit IV: Environmental Pollution

Definition
• Cause, effects and control measures of:
 o Air pollution
 o Water pollution
 o Soil pollution
 o Marine pollution
 o Noise pollution
 o Thermal pollution
 o Nuclear hazards
• Solid waste Management: Causes, effects and control measures of urban and industrial wastes.
• Role of an individual in prevention of pollution.
• Pollution case studies.
• Disaster management: floods, earthquake, cyclone and landslides.

UNIT V - Social Issues and the Environment

• From Unsustainable to Sustainable development
• Urban problems related to energy
• Water conservation, rain water harvesting, watershed management
• Resettlement and rehabilitation of people; its problems and concerns. Case Studies
• Environmental ethics: Issues and possible solutions.
• Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies.
- Wasteland reclamation.
- Consumerism and waste products.
- Environment Protection Act.
- Air (Prevention and Control of Pollution) Act.
- Water (Prevention and control of Pollution) Act
- Wildlife Protection Act
- Forest Conservation Act
- Issues involved in enforcement of environmental legislation.
- Public awareness.

UNIT VI - Human Population and the Environment
- Population growth, variation among nations.
- Environment and human health.
- Human Rights.
- Value Education.
- HIV/AIDS.
- Women and Child Welfare.
- Role of Information Technology in Environment and human health.
- Case Studies. (6 lectures)

Note: Introduction and familiarize students with the following

Global Environmental Issues and Environmental Laws

Field work
1. Visit to a local area to document environmental assets river / forest / grassland / hill / mountain
2. Visit to a local polluted site-Urban / Rural / Industrial / Agricultural
3. Study of common plants, insects, birds.
4. Study of simple ecosystems-pond, river, hill slopes, etc.
5. Plantation at least 2 fruits tree in Surroundings. Pic is to taken.
6. Any useful daily good from waste materials.
7. Taken at least 5 pics of surrounding by mobile in relation to environmental/social issues.
8. Development of detailed list of flora and fauna of college campus.

Note: Minimum Five activities shall be done by each class and reports shall submit to University after host institute verification.

Text Books:
Suggested Readings: