Uttarakhand Technical University, Dehradun
Scheme of Examination as per AICTE Flexible Curricula
Evaluation Scheme & Syllabus for B. Tech Second Year

W.E.F. Academic Session 2019-20

Bachelor of Technology (B. Tech.)

[Electrical & Electronics Engineering]

II Year (III & IV Semester)
Uttarakhand Technical University, Dehradun
B Tech II Year (Electrical & Electronics Engineering)
As per AICTE model curriculum
[W.E.F Academics Session: 2019-20]

Semester III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Category</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Contact Hours per week</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BCET 301</td>
<td>ES</td>
<td>Energy & Environmental Engineering</td>
<td>100 30 20 - - -</td>
<td>150 3 - - - 3</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>BEST 301</td>
<td>BSC</td>
<td>Mathematics-III</td>
<td>100 30 20</td>
<td>150 3 1 - 4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>BEET 301 BEEP 301</td>
<td>DC</td>
<td>Electrical Measurements & Instrumentation</td>
<td>100 30 20 30 20</td>
<td>200 3 1 2 5</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BECT 304 BECP 304</td>
<td>DC</td>
<td>Electronic Devices</td>
<td>100 30 20 30 20</td>
<td>200 3 1 2 5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>BEET 305 BEEP 305</td>
<td>DC</td>
<td>Networks Analysis and Synthesis</td>
<td>100 30 20 30 20</td>
<td>200 3 1 2 5</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>BEEP 306</td>
<td>DC</td>
<td>Programming Practices</td>
<td>- - - 30 20</td>
<td>50 - - 4 2</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BASP 307</td>
<td>DC</td>
<td>Evaluation of Internship-I Completed at I year level</td>
<td>- - - - 50 50</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>BASP 307 DLC</td>
<td>90 hrs Internship based on using various software’s –Internship –II</td>
<td>To be completed anytime during fourth semester. Its evaluation/credit to be added in fifth semester.</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 150 100 120 130</td>
<td>100 15 4 14 26</td>
</tr>
<tr>
<td>9.</td>
<td>BCSP 308</td>
<td>MC</td>
<td>Cyber Security</td>
<td>Non-credit course</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The Mini Project or internship (3-4 weeks) conducted during summer break after II semester and will be assessed during III semester.

Semester IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Category</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Contact Hours per week</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BECT 402 DC</td>
<td>DC</td>
<td>Signals and Systems</td>
<td>100 30 20 - - -</td>
<td>150 3 1 - - - 4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>BECT 402 BEEP 402</td>
<td>DC</td>
<td>Electrical Machine-I</td>
<td>100 30 20 30 20</td>
<td>200 3 1 2 5</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>BECT 401 BECP 401</td>
<td>DC</td>
<td>Digital Electronics</td>
<td>100 30 20 30 20</td>
<td>200 3 1 2 5</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BECT 404 BEEP 404</td>
<td>DC</td>
<td>Power System-I</td>
<td>100 30 20 30 20</td>
<td>200 3 1 2 5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>BECT 405 BEEP 405</td>
<td>DC</td>
<td>Control System</td>
<td>100 30 20 30 20</td>
<td>200 3 0 2 5</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>BCSP 409 DLC</td>
<td>Computer Programming-II (Python)</td>
<td>- - - 30 20</td>
<td>50 - - 4 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BENP 407 DLC</td>
<td>90 hrs Internship based on using various software’s –Internship –II</td>
<td>To be completed anytime during fourth semester. Its evaluation/credit to be added in fifth semester.</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 150 100 150 100</td>
<td>1000 15 4 10 26</td>
</tr>
<tr>
<td>8.</td>
<td>BCSP 408 MC</td>
<td>Cyber Security</td>
<td>Non-credit course</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSS/NCC
Course Objectives:

The objective of this course is to apply knowledge of mathematics, science, technology and engineering appropriate to energy science and engineering degree discipline and to enhance the understanding of conventional and non-conventional energy sources and its relationship with the ecology and environment. More precisely the objectives are:

1. Use mathematical or experimental tools and techniques relevant to the energy and energy-related environmental disciplines along with an understanding of their processes and limitations.
2. Equip the students with knowledge and understanding of various possible mechanisms about renewable energy projects
3. To produce graduates strong in understanding on energy resources, technologies and systems, energy management fundamentals, and capable in innovative technological intervention towards the present and potential future energy.
4. To identify, formulate and solve energy and energy-related environmental problems by pursuing development of innovative technologies that can generate clean and sustainable energy to address energy scarcity and combat pollution and climate change.

Course Outcomes

1. Apply advanced level knowledge, techniques, skills and modern tools in the field of Energy and Environmental Engineering.
2. Distinguish the different energy generation systems and their environmental impacts.
3. Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of energy and environment.

Detailed Content

Module I: Introduction to Energy Science - Introduction to energy systems and resources; Introduction to Energy, sustainability & the environment, Global Energy Scenario: Role of energy in economic development. Indian Energy Scenario: Introduction to Energy resources & Consumption in India. Common terminologies

Module II

Module III

Energy Efficiency and Conservation - Introduction to clean energy technologies and its importance in sustainable development; Carbon footprint, energy consumption and sustainability; introduction to the economics of energy; How the economic system determines production and consumption; linkages between economic and environmental outcomes; How future energy use can be influenced by economic, environmental, trade, and Research policy.

Module IV

Module V

Environmental Protection and Ethics - Environmental Protection- Role of Government Initiatives by Non-governmental Organizations (NGO) Environmental Education. Ethics and moral values Objectives of ethics, Professional and Non-professional ethics Sustainable Development of the ecology and environment Codes of ethics and their limitations

Suggested reading material:

5. Energy Management: W.R.Murphy, G.Mckay (Butterworths)
Students Should have the knowledge of Mathematics I and Mathematics II

Course Objective:

The objective of this course is to familiarize the students with Laplace Transform, Fourier Transform, techniques in numerical methods & some statistical techniques. It aims to present the students with standard concepts and tools at B.Tech first year to superior level that will provide them well towards undertaking a variety of problems in the concern discipline.

The students will learn:
- The idea of Laplace transform of functions and their applications.
- The idea of Fourier transform of functions and their applications.
- To evaluate roots of algebraic and transcendental equations.
- Interpolation, differentiation, integration and the solution of differential equations.
- The basic ideas of statistics including measures of central tendency, correlation, regression and their properties.

COURSE OUTCOMES(s):

At the end of this course, the students will be able to:
1. Remember the concept of Laplace transform and apply in solving real life problems.
2. Understand the concept of Fourier transform to evaluate engineering problems
3. Understand to evaluate roots of algebraic and transcendental equations.
5. Understand the concept of correlation, regression, moments, skewness and kurtosis and curve fitting.

Module 1: Fourier Transforms: (8 hours)

Fourier integral, Fourier Transform, Complex Fourier transform, Inverse Transforms, Convolution Theorem, Fourier sine and cosine transform, Applications of Fourier transform to simple one dimensional heat transfer equations.

Module 2: Laplace Transform: (8 hours)

Definition of Laplace transform, Existence theorem, Laplace transforms of derivatives and integrals, Initial and final value theorems, Unit step function, Dirac- delta function, Laplace transform of periodic function, Inverse Laplace transform, Convolution theorem, Application to solve linear differential equations.

Module 3: Solution of Algebraic and Transcendental equations & Interpolation (8 hours)
Number and their accuracy, Solution of algebraic and transcendental equations: Bisection method, Iteration method, Newton-Raphson method and Regula-Falsi method. Rate of convergence of these methods (without proof),

Interpolation: Finite differences, Relation between operators, Interpolation using Newton’s forward and backward difference formula. Interpolation with unequal intervals: Newton’s divided difference and Lagrange’s formula.

Module 4: Numerical differentiation, Integration & Solution of ODE (8 hours)

Module 5: Statistical Techniques (8 hours)

Introduction: Measures of central tendency, Moments, Moment generating function (MGF), Skewness, Kurtosis, Curve Fitting : Method of least squares, Fitting of straight lines, Fitting of second degree parabola, Exponential curves. Correlation and Rank correlation, Regression Analysis: Regression lines of y on x and x on y, regression coefficients, properties of regressions coefficients and non-linear regression.

Reference Books:
Course outcomes:

At the end of this course students will demonstrate the ability to:
- Able to learn the errors in measurement and use different types of instruments for the measurement
- Acquire the knowledge of electrical quantities and their measurement
- Acquire the knowledge of working of instrument transformers
- Acquire the knowledge of working of electronic instruments
- Acquire the knowledge of transducers, their classifications and applications for the measurement of physical quantities

Course outcomes:

At the end of this course students will demonstrate the ability to:
- Able to understand the importance of calibration of measuring instruments
- Able to understand and learn the construction and working of different measuring instruments
- Able to understand and learn the construction and working of different AC and DC bridges, along with their applications
- Able to measure electrical engineering parameters like voltage, current, power & phase difference in industry as well as in power generation, transmission and distribution sectors
- Able to understand and acquire the capability to analyze and solving the variety of problems in the field of electrical measurements.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Measurement of Resistance, Inductance and Capacitance: Measurement of low, medium and high resistances, insulation resistance measurement, AC bridges for inductance and capacitance measurement.</td>
</tr>
<tr>
<td>III</td>
<td>Instrument Transformers: Current and Potential transformer, ratio and phase angle errors, design considerations and testing.</td>
</tr>
<tr>
<td>IV</td>
<td>Electronic Measurements: Electronic instruments: Voltmeter, Multimeter, Wattmeter & energy meter. Time, Frequency and phase angle measurements using CRO; Storage oscilloscope, Spectrum & Wave analyzer, Digital counter, frequency meter, and Digital Voltmeter.</td>
</tr>
</tbody>
</table>
LIST OF EXPERIMENTS:

1. Calibration of AC voltmeter and AC ammeter.
5. Measurement of Power using CT and PT.
6. Measuring displacement using LVDT.
7. PC based data logging of temperature sensor using Lab VIEW/ MATLAB.
8. Signal conditioning of analog signal using Lab VIEW/ MATLAB.

Text/Reference Books:
3. Hill 2nd Edition
5. Forest K. Harris, “Electrical Measurement”, Willey Eastern Pvt. Ltd. India
7. WD Cooper, “Electronic Instrument & Measurement Technique”, Prentice Hall International
COURSE OBJECTIVE(s):
1. To understand operation of semiconductor devices.
2. To understand DC analysis and AC models of semiconductor devices.
3. To study diodes and its application
4. To study basic concepts for the design of BJT and FET

Course Outcomes:

At the end of this course students will demonstrate the ability to:
1. Understand the principles of semiconductor Physics.
2. Understand and utilize the mathematical models of semiconductor junctions.
3. Understand carrier transport in semiconductors.
4. Utilize the mathematical models of MOS transistors for circuits and systems.
5. Analyze and find application of special purpose diodes.

Course Contents:

Module 2: Generation and recombination of carriers: Poisson and continuity equation P-N junction characteristics, I-V characteristics, carrier recombination, and small signal switching models.

Module 4: Bipolar Junction Transistor: Basic construction, transistor action, CB, CE and CC configurations, input/output Characteristics, concept of Biasing of transistors-fixed bias, emitter bias, potential divider bias, BJT Models.

Module 5: Field Effect Transistor: JFET: Basic construction, transistor action, concept of pinch off, maximum drain saturation current, input and transfer characteristics, characteristics equation CG, CS and CD configurations, Introduction to self and fixed biasing. MOSFFT: depletion and enhancement type MOSFET-construction, operation and characteristics.

LIST OF EXPERIMENTS
1. Study of Lab Equipment and Components: CRO, multimeter, and function generator, power supply- active, passive components and bread board.
2. P-N Junction diode: Characteristics of PN junction diode - static and dynamic resistance measurement from graph.
3. Applications of PN Junction diode: Half & Full wave rectifier- Measurement of \(V_{\text{rms}} \), \(V_{\text{dc}} \), and ripple factor.
4. **Characteristics of Zener diode:** V-I characteristics of Zener diode, graphical measurement of forward and reverse resistance.

5. **Characteristics of Photo diode:** V-I characteristics of photo diode, graphical measurement of forward and reverse resistance.

6. **Characteristics of Solar cell:** V-I characteristics of solar cell, graphical measurement of forward and reverse resistance.

7. **Application of Zener diode:** Zener diode as voltage regulator. Measurement of percentage regulation by varying load resistor.

8. **Characteristic of BJT:** BJT in CE configuration- graphical measurement of h-parameters from input and output characteristics. Measurement of A_v, A_I, R_o and R_i of CE amplifier with potential divider biasing.

9. **Field Effect Transistors:** Single stage common source FET amplifier –plot of gain in dB Vs frequency, measurement of bandwidth and input impedance.

10. **Metal Oxide Semiconductor Field Effect Transistors:** Single stage MOSFET amplifier–plot of gain in dB Vs frequency, measurement of bandwidth and input impedance.

Textbooks/References:

Course Objectives:
At the end of this course students will demonstrate the ability to:

➢ Ability to solve electrical circuits with Graphs
➢ To learn techniques of solving circuits involving different active and passive elements
➢ To analyze the behaviors of the circuit’s response in time domain
➢ To analyze behavior of the circuit’s response in frequency domain
➢ To understand the significance of network function

Course Outcomes:
At the end of this course students will demonstrate the ability to:

➢ To understand basic electrical circuits with nodal and mesh analysis
➢ To apply Laplace transform for steady state and transient analysis
➢ Determine different network functions
➢ To understand electrical network theorems

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Graph Theory: Basic circuital law, Mesh & Nodal analysis. Importance of Graph Theory in Network Analysis, Graph of a network, Definitions, planar & Non-Planar Graphs, Isomorphism, Tree, Co Tree, Link, basic loop and basic cut set, Incidence matrix, Cut set matrix, Tie set matrix, Duality, Loop and Nodal methods of analysis.</td>
</tr>
<tr>
<td>II</td>
<td>AC Network Theorems: Concepts of DC Network Theorems, Electrical Sources, Basic circuital law. Superposition theorem, Thevenin’s theorem, Norton’s theorem, Maximum power transfer theorem, Reciprocity theorem. Millman’s theorem, Compensation theorem, Tellegen’s Theorem.</td>
</tr>
<tr>
<td>III</td>
<td>Laplace transforms and properties, Application of Laplace transforms in Electrical System, Application of Partial fractions, singularity functions, waveform synthesis, analysis of RC, RL, and RLC networks with and without initial conditions with Laplace transforms evaluation of initial conditions.</td>
</tr>
<tr>
<td>IV</td>
<td>Two Port Networks- Characterization of LTI two port networks; Z, Y, ABCD & h parameters, Reciprocity and symmetry, Inter-relationships between the parameters, Interconnections of two port networks, Ladder and Lattice networks.</td>
</tr>
<tr>
<td>V</td>
<td>Network Synthesis: Concept of poles and zeros, Properties of driving point and transfer functions. Positive real function; definition and properties, Properties of LC, RC and RL driving point functions, Synthesis of LC, RC and RL driving point immittance functions using Foster and Cauer first and second forms.</td>
</tr>
</tbody>
</table>
LIST OF EXPERIMENTS:

1. Verification of principle of superposition with dc and ac sources.
2. Verification of Thevenin, Norton and Maximum power transfer theorems in ac circuits
3. Verification of Tellegen’s theorem for two networks of the same topology.
5. Determination of transient response of current in RLC circuit with step voltage input for under damp, critically damp and over damp cases.
6. Determination of frequency response of current in RLC circuit with sinusoidal ac input.
7. Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters.
8. Determination of driving point and transfer functions of a two port ladder network and verify with theoretical values.

Text/Reference Books:

4. Reference Books:
Course Objectives:
1. The course is intended to assist undergraduates in learning the basics of programming in general and programming MATLAB in particular.
2. Basics of programming in MATLAB will be covered, with the goal of having students become comfortable enough to continue learning MATLAB and other programming languages on their own.

Course Outcomes:

At the end of the course, students will be able to
1. Use MATLAB for programming purposes
2. Learn and explore MATLAB further on their own
3. Use this learning experience to learn other programming languages.

MODULE 1: INTRODUCTION

Data types and variables: Introduction to MATLAB, Data Types, Inter-conversion of Data types, MATLAB Variables, Keywords and Constant, Session Command. *MATLAB Operators and Operations:* Operators (Arithmetic, Relational, Logical, Bitwise), Set Operations, Operator Precedence, Mathematical Functions.

MODULE 2: PROGRAMMING IN MATLAB

MODULE 3: ARRAYS AND GRAPHICS

Matrices and Arrays: Introduction to Matrices, Operations on Arrays/Matrices, Manipulations of Arrays/Matrices, Expansion of Matrix Size, Reduction of Matrices/Arrays order,

Graphics: Introduction to plot, Basic 2-D Plots (Style options, Labels, Axis control, etc.), specialized 2-D Plots, drawing multiple plots. Using MATLAB for fractals and chaos and Conway game of life

MODULE 4: FILE HANDLING AND DEBUGGING

File Handling: Introduction to file handling, working on files, accessing of Text File, Saving/Loading MATLAB Variables, reading data without opening file, reading and writing Excel.

Debugging: Introduction to debugging, Break points, debugger, stepping, watching variable values, debugging commands.
REFERENCES:

WEB REFERENCES

https://ocw.mit.edu/courses/mathematics/18-s997-introduction-to-matlab-programming-fall-2011/syllabus/
1. Understand the basic concept of Cyber Security.
2. Understand the basic concept of Viruses.
3. Understand the basic concept of Digital Attacks.
4. Understand the basic concept of Phishing.
5. Understand the basic concept of Cyber Law.

Course Outcomes:

After the completion of this course the student will able to:

1. Know about various attacks and viruses in cyber systems
2. Know about how to prevent digital attacks
3. Know about how to prevent Phishing Attacks
4. Know about how to do secure transactions

MODULE-1

MODULE-2

Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control.

Security Threats -Viruses, Worms, Trojan Horse, Bombs, Trapdoors, Spoofs, E-mail viruses, Macro viruses, Malicious Software, Network and Denial of Services Attack, Security Threats to E-Commerce- Electronic Payment System, e- Cash, Credit/Debit Cards. Digital Signature, public Key Cryptography.

MODULE-3

Governance & Risk Management, Security Architecture & Design Security Issues in Hardware, Data Storage & Downloadable Devices, Physical Security of IT Assets,

MODULE-4

References:
3. 3.Dr. Surya Prakash Tripathi, Ritendra Goyal, Praveen kumar Shukla ,”Introduction to Information Security and Cyber Law” Willey Dreamtech Press.
Course Objective:
The objectives of this course are
1. To develop good understanding about signals, systems and their classification to provide with necessary tools and techniques.
2. To analyze electrical networks and systems to develop expertise in time-domain and frequency domain approaches to the analysis of continuous and discrete systems.
3. To introduce to the basics of probability, random variables and the various distribution and density functions;
4. To develop students’ ability to apply modern simulation software to system.

COURSE OUTCOME(s):
Upon the completion of the course, students will be able to:
1. Analyze the properties of signals & systems
2. Apply Laplace transform, Fourier transform, Z transform and DTFT in signal analysis
3. Analyze continuous time LTI systems using Fourier and Laplace Transforms
4. Analyze discrete time LTI systems using Z transform and DTFT

Module 5: Z-Transform: Z-Transform, Region of convergence, Inverse Z-transform, analysis and characterization of LTI system, Block diagram representation, Unilateral Z-transform.
Text/Reference books:
COURSE OUTCOMES (COs):

At the end of this course students will demonstrate the ability to:

- Able to learn and analyze the various principles & concepts involved in Electromechanical Energy conversion
- Acquire the knowledge and Demonstrating the constructional details of DC machines as well as transformers
- Acquire the knowledge of working of transformers
- Acquire the knowledge of working of DC machines
- Acquire the knowledge of performance of transformers, individually and in parallel operation

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>DC Machines-I: Principle & Construction, Classification and circuit model, EMF equation of generator and torque equation of motor. Armature winding (Concentrated and Distributed), Armature reaction, Commutation, Interpoles and compensating windings, Performance characteristics of DC generators, Applications.</td>
</tr>
<tr>
<td>III</td>
<td>DC Machines-II: Performance characteristics of DC motors, Starting of DC motors; 3 point and 4 point starters, Speed control of DC motors; Field control, Armature control and Voltage control (Ward Leonard method); Efficiency and Testing of DC machines (Hopkinson's and Swinburne's Test), Applications, Introduction to Brushless DC Motor, stepper motor and DC Servo motor and their applications.</td>
</tr>
<tr>
<td>V</td>
<td>Three Phase Transformers: Construction, Three phase transformer, phasor groups and their connections, open delta connection, three phase to 2 phase and their applications, Three winding transformers. Parallel operation of single phase and three phase transformers and load sharing.</td>
</tr>
</tbody>
</table>

Experiments
1. To obtain magnetization characteristics of a DC shunt generator
2. To obtain load characteristics of a DC shunt generator and compound generator (a)
3. To perform Hopkinson’s test and determine losses and efficiency of DC machine
4. To obtain speed-torque characteristics of a dc shunt motor
5. To obtain speed control of DC shunt motor using (a) armature resistance control (b) field control
6. To study polarity and ratio test of single phase and 3-phase transformers
8. To obtain efficiency and voltage regulation of a single phase transformer by Sumpner’s test.

Text/Reference Books:
1. IJ Nagrath & D.P. Kothari, "Electrical Machines", Tata McGraw Hill
2. Rajendra Prasad, "Electrical Machines", PHI
3. PS Bimbhra, "Electrical Machinery", Khanna Publisher
7. PS Bimbhra, "Generalized Theory".
COURSE OBJECTIVE(s):

The objectives of this course are to:
1. Introduce the concept of digital and binary systems
2. Be able to design and analyze combinational logic circuits.
3. Be able to design and analyze sequential logic circuits.
4. Understand the basic software tools for the design and implementation of digital circuits and systems.
5. Reinforce theory and techniques taught in the classroom through experiments and projects in the laboratory.

COURSE OUTCOME(s):

1. After successful completion of the course student will be able to
2. Develop a digital logic and apply it to solve real life problems.
3. Analyze, design and implement combinational logic circuits.
4. Classify different semiconductor memories.
5. Analyze, design and implement sequential logic circuits.
6. Analyze digital system design using PLD.
7. Simulate and implement combinational and sequential circuits.

Course Contents:

Module 1:
Number Systems Binary Codes: Number System and its arithmetic, conversion between bases, Boolean algebra, Canonical form, SOP & POS forms, Minimization of Boolean Functions: K Map (upto 5 variables), Quine-Mcclusky method, Error detection & correcting codes, Hamming codes, Binary codes.

Module 2:

Module 3:
Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, Flip Flops: SR, JK, D and T Type, Timing and Triggering Consideration, JK Master Slave, Excitation Table of all Flip Flops, Conversion from one type of Flip-Flop to another.

Module 4:

Finite State Machine: Mealy and Moore machines, State Table, State Diagram, Reduction of State Table, FSM Design Steps, Counter Design Using FSM.

Logic Families: Classification of Logic Families, Parameters: Propagation Delay, Power Dissipation, Fan-in, Fan-out, Noise Margin. TTL Family, TTL output configurations, ECL Family, IIL Family, MOS Family. Logic gate design using TTL and MOS.

Module 5:

Hazard, Fault Detection: Hazard and Fault Detection, Static Hazards, Dynamic Hazards, Determination of Hazards in Combinational Circuits. Fault Detection Using Fault Table and Path Sensitizing Methods.

Memories: Sequential Access Memories, Random Access Memories, RAM, ROM, PROM, EPROM, EEPROM, Static and Dynamic RAM cells using nMOS CMOS, Memory Size Expansion.

List of Experiments:

1. Introduction to Digital Electronics lab- nomenclature of digital ICS.
2. Implementation of the given Boolean function using logic gates in both sop and pos forms.
3. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.
4. Implementation and verification of decoder/de-multiplexer and encoder using logic gates.
5. Implementation of 4x1 multiplexer using logic gates.
6. Implementation of 4-bit parallel adder using 7483 IC.
7. To design and verify operation of half adder and full adder.
8. To design & verify the operation of magnitude comparator.
9. Design and verify the 4-bit synchronous counter.
10. Design and verify the 4-bit asynchronous counter.

Textbooks/References:

COURSE OUTCOMES (COs):

At the end of this course students will demonstrate the ability to:

➢ Acquire the knowledge of Power System Components, its element, transmission line, OHTL etc.
➢ Acquire the knowledge of corona and insulator and its calculation
➢ Acquire the knowledge of Design of transmission line, EHV AC and HVDC Transmission,
➢ Acquire the knowledge of Insulated cables Grounding and Insulated cables
➢ Acquire knowledge of High and extra high voltage transmission.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topics</th>
</tr>
</thead>
</table>
| I | **Power System Components:** Single line Diagram of Power system, Brief description of power system
 Elements: Synchronous machine, transformer, transmission line, bus bar, circuit breaker and isolator
 Transmission Lines: Configurations, types of conductors, resistance of line, skin effect, Kelvin’s law. Proximity effect |
| II | **Over Head Transmission Lines:** Calculation of inductance and capacitance of single phase, three phase, single circuit and double circuit transmission lines, Representation and performance of short, medium and long transmission lines, Ferranti effect, Surge impedance loading |
| III | **Corona and Interference:** Phenomenon of corona, corona formation, calculation of potential gradient, corona loss, factors affecting corona, methods of reducing corona and interference. Electrostatic and electromagnetic interference with communication lines
 Overhead line Insulators: Type of insulators and their applications, potential distribution over a string of insulators, methods of equalizing the potential, string efficiency |
| IV | **Mechanical Design of transmission line:** Catenary curve, calculation of sag & tension, effects of wind and ice loading, sag template, vibration dampers
 Insulated cables: Type of cables and their construction, dielectric stress, grading of cables, insulation resistance, capacitance of single phase and three phase cables, dielectric loss, heating of cables |
| V | **Neutral grounding:** Necessity of neutral grounding, various methods of neutral grounding, earthing transformer, grounding practices
 Electrical Design of Transmission Line: Design consideration of EHV transmission lines, choice of voltage, number of circuits, conductor configuration, insulation design, selection of ground wires |
Experiments

1. MATLAB Program to Simulate Ferranti Effect
2. MATLAB Program to Model Transmission Lines
3. To observe the voltage distribution across an Insulator String
4. To study of Sag and factors effecting on Sag of Transmission Line
5. Study of Corona Discharge and AC Breakdown Voltage for Different Electrode-Gap Geometry.
6. Three phase short circuit analysis in a Synchronous Machine using MATLAB/ SIMULINK.
7. Z-bus Building Algorithm using MATLAB.

Text/Reference Books:
3. Asfaq Hussain, “Power System”, CBS Publishers and Distributors
COURSE OUTCOMES (COs):

➢ Students will be able to learn the basics of various types of control systems and automatic systems.
➢ Students will be able to build the mathematical model of system from differential equation and vice versa and shall know the better effects of feedback due to parameter variations.
➢ Students will be able to apply the basic knowledge to formulate the input output relationship of various component used in control system and their applications in building control system.
➢ Students will be able to perform and study a time domain analysis of control system and different performance measures and finally know about behavior of the system.
➢ Students will be able to learn the concept of stability, poles and zeros, using routh Hurwitz criteria and relative stability by bode plot, polar plot, Nyquist plot and be able to design and analyze the given system in frequency domain.

Detailed Content

Module I: The Control System: Open loop & closed control; servomechanism, Physical examples. Transfer functions, Block diagram algebra, Signal flow graph, Mason’s gain formula Reduction of parameter variation and effects of disturbance by using negative feedback

Module II: Time Response analysis: Standard test signals, time response of first and second order systems, time response specifications, steady state errors and error constants Design specifications of second order systems: Derivative error, derivative output, integral error and PID compensations, design considerations for higher order systems, performance indices

Module III: Control System Components: Constructional and working concept of ac servomotor, synchros and stepper motor Stability and Algebraic Criteria concept of stability and necessary conditions, Routh Hurwitz criteria and limitations Root Locus Technique: The root locus concepts, construction of root loci

Module IV: Frequency response Analysis: Frequency response, correlation between time and frequency responses, polar and inverse polar plots, Bode plots Stability in Frequency Domain: Nyquist stability criterion, assessment of relative stability: gain margin and phase margin, constant M&N circles

Module V: Introduction to Design: The design problem and preliminary considerations lead, lag and lead-lag networks, design of closed loop systems using compensation techniques in time domain and frequency domain.

Experiments

1. To study P, PI and PID temperature controller for an oven and compare their performance.
2. To design Lag, Lead and Lag-Lead compensators using Bode plot.
3. To study DC position control system
4. To study synchro-transmitter and receiver and obtain output V/S input characteristics
5. To determine speed-torque characteristics of an ac servomotor.
6. To study behavior of separately excited dc motor in open loop and closed loop conditions at various loads.
7. To determine time domain response of a second order system for step input and obtain performance parameters.
8. To plot root locus diagram of an open loop transfer function and determine range of gain ‘k’ for stability.
9. To plot a Bode diagram of an open loop transfer function.
10. To draw a Nyquist plot of an open loop transfer functions and examine the stability of the closed loop system.

Reference Books:
1. Write a Python program to display the current date and time.
2. Write a Python program which accepts the radius of a circle from the user and compute the area.
3. Write a Python program which accepts the user's first and last name and print them in reverse order with a space between them.
4. Write a Python program which accepts a sequence of comma-separated numbers from user and generate a list.
5. Write a Python program to display the first and last colors from the following list. Color_List = ["Red","Green","White","Black"]
6. Write a Python program that accepts an integer (n) and computes the value of n+n+n.
7. Write a Python program to print the calendar of a given month and year.
8. Write a Python program to calculate number of days between two dates. Sample dates: (2014, 7, 2), (2014, 7, 11)
9. Write a Python program to get the volume of a sphere with radius 6.
 Write a Python program to get the difference between a given number and 17, if the number is greater than 17 return double the absolute difference.
10. Write a Python program to calculate the sum of three given numbers, if the values are equal then return three times of their sum.
11. Write a Python program to get a new string from a given string where "Is" has been added to the front. If the given string already begins with "Is" then return the string unchanged.