SYLLABUS

For

Master of Engineering Programmes

(M.TECH-CSE)

(For admission in 2022-23 and onwards)
M.Tech Evaluation Scheme

Computer Science and Engineering

Semester I

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AHT-301</td>
<td>Advanced Mathematics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>CST-301</td>
<td>Open-Source Software Technologies</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>CST-302</td>
<td>Advanced Data Structures and Algorithms</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>CST–3XX</td>
<td>Program Elective - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>CST–3XX</td>
<td>Program Elective - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>AHT-302</td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>AHT-303</td>
<td>Audit-I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>CSP-301</td>
<td>Open-Source Software Technologies Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>CSP-302</td>
<td>Advanced-Data Structures and Algorithms Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>22</td>
<td>3</td>
<td>8</td>
<td>22</td>
<td>400</td>
</tr>
</tbody>
</table>

Program Elective-I

1. **CST-303** Machine Learning
2. **CST-304** Wireless Sensor Networks
3. **CST-305** Smart Sensors and IoT
4. **CST-306** Data Centre Management

Program Elective-II

1. **CST-307** Data Science
2. **CST-308** Distributed Systems
3. **CST-309** Advanced Wireless and Mobile Networks
4. **CST-310** Web analytics and development
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
<th>Intern Marks</th>
<th>External Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CST – 311</td>
<td>High Performance Scientific Computing</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>CST – 312</td>
<td>Soft Computing</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>CST – 3XX</td>
<td>Program Elective - III</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>CST – 3XX</td>
<td>Program Elective - IV</td>
<td>3 0 0</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>CST – 3XX</td>
<td>Open Elective-I</td>
<td>3 0 0</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>CSP - 303</td>
<td>High Performance Scientific Computing Lab</td>
<td>0 0 2</td>
<td>1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>CSP - 304</td>
<td>Soft Computing Lab</td>
<td>0 0 2</td>
<td>1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15 3 6</td>
<td>20</td>
<td>300</td>
<td>550</td>
<td>950</td>
</tr>
</tbody>
</table>

Program Elective-III

1. **CST-313** Data Preparation and Analysis
2. **CST-314** Secure Software Design & Enterprise Computing
3. **CST-315** Computer Vision
4. **CST-316** Cyber Security

Program Elective-IV

1. **CST-317** Cloud Computing
2. **CST-318** GPU Computing
3. **CST-319** Digital Forensics
4. **CST-320** Big data analytics

Open Elective-I

1. **CST-321** Human Computer Interaction
2. **CST-322** Software Engineering
3. **CST-323** Python Programming
Semester III

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CST-3XX</td>
<td>Open Elective - II</td>
<td>3 0 0 3</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CSP- 305</td>
<td>Seminar</td>
<td>0 0 4 2</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CSP- 306</td>
<td>Project</td>
<td>0 0 10 5</td>
<td>100</td>
<td></td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>CSP- 307</td>
<td>Dissertation</td>
<td>0 0 12 6</td>
<td>300</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>3 0 22 16</td>
<td>550</td>
<td>250</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

Open Elective-II

1. **CST-324** Fuzzy Logic
2. **CST-325** Software Testing
3. **CST-326** Neural Networks
4. **CST-327** Web Technologies
5. **CST-328** Cyber Laws and Ethics
6. **CST-329** Mobile Application and Services

Semester IV

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
<th>Internal Marks</th>
<th>External Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CSP- 308</td>
<td>Dissertation</td>
<td>0 0 28 14</td>
<td>250</td>
<td></td>
<td>450</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>0 0 28 14</td>
<td>250</td>
<td>450</td>
<td>700</td>
<td></td>
</tr>
</tbody>
</table>
Course objectives:

From this course, students will be able to:
1. Learn distinct methods of solving simultaneous equations.
2. Well-versed with partial differential equations and their solutions and applications.
3. Acquire the knowledge of transformation to ease the complex problems.
4. Acquaintance with basics of random variables and their distribution for dealing with events by chance.
5. Study different mathematical domains to deal with real-time engineering problems.

Learning outcomes:

1. Comprehend with engineering problems in different mathematical realm.
2. Learn analytical and numerical methods to deal with mathematical problems.
3. Understand how to model the engineering problems and their solutions.
4. Implement the solutions to real-time complex engineering problems.
5. Apprehend with mathematical methodology.

Course content:

Unit I: Solution of linear simultaneous equations: (8 hours)

Consistency, Iterative method, Convergence, Cholesky’s (Crout’s) method, Gauss-Jordan method, Gauss-Seidel iteration and relaxation methods, Solution of Eigenvalue problems, Smallest, largest, and intermediate Eigen values

Computer based algorithm and programme for these methods (non-evaluative)

Unit II: Partial differential equation and its applications: (10 hours)

Introduction and classification of partial differential equation, Four standard forms of non-linear partial differential equations and their solutions, linear equations with constant coefficients. Applications of partial differential equations one and two-dimensional wave equation, one and two-dimensional heat equation, Two-dimensional Laplace’s equation.
VEER MADHO SINGH BHANDARI UTTARAKHAND TECHNICAL UNIVERSITY, DEHRADUN

Syllabus
Advanced Mathematics (AHT-301)

L:T:P:: 3:1:0
Credits-4

Unit III: Transform calculus-I: (8 hours)
Laplace transform, Properties of Laplace transform, Inverse Laplace transform, Applications of Laplace transform, Fourier integral theorem, Fourier transforms, Application of Fourier transform

Unit IV: Transform calculus-II: (8 hours)
Z-transform, Properties of Z-transform, Shifting theorems, Initial and final value theorem, Convolution theorems, Inverse Z-transform, Application of Z-transform

Unit V: Basic probability theory: (8 hours)
Concept and laws of probability, Discrete and continuous random variable and their distributions; Some special distributions such as Binomial, Poisson, Negative Binomial, Geometric, Continuous uniform, Normal, Exponential, Weibull, Moments, Moment generating functions, Expectation and variance

Practical demo with statistical software like R, SPSS, SAS, etc. (non-evaluative)

Text Books / References:
Course Objectives:
1. To learn the setting up of GNU/Linux-based servers and workstation
2. To learn shell programming
3. To learn to configure application and server software
4. To learn to perform system administration tasks
5. To learn to use free and open-source components.

Course Outcomes:
1. Install and run open-source operating systems.
2. Gather information about Free and Open Source Software projects from software releases and from sites on the internet.
3. Build and modify one or more Free and Open Source Software packages.
4. Apply the firewall configuration to web servers.
5. Contribute software to and interact with Free and Open Source Software development projects.

List of Programs:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview of FOSS & Basic Command interface on Linux</td>
</tr>
<tr>
<td></td>
<td>i. Basic Linux Commands</td>
</tr>
<tr>
<td></td>
<td>ii. File Utilities Commands</td>
</tr>
<tr>
<td>2</td>
<td>Learning Administrative Commands:</td>
</tr>
<tr>
<td></td>
<td>i. Basic administrative commands</td>
</tr>
<tr>
<td></td>
<td>ii. Vi Editor & its Modes</td>
</tr>
<tr>
<td></td>
<td>iii. Network Related Commands</td>
</tr>
<tr>
<td>4</td>
<td>Learning Shell Scripting</td>
</tr>
<tr>
<td></td>
<td>i. A Script to check for a file existence in the file system.</td>
</tr>
<tr>
<td></td>
<td>ii. A Script to execute different command to demonstrate Switch cases statement.</td>
</tr>
<tr>
<td></td>
<td>iii. A Script to handle command line argument and other Special symbols</td>
</tr>
<tr>
<td>7</td>
<td>Learn how to Compile, Debug & Execute C, C++ & Java Programming Code without IDEs</td>
</tr>
<tr>
<td></td>
<td>i. Create a sample C program for demonstrating the use of control statements then compile and execute the code.</td>
</tr>
<tr>
<td></td>
<td>ii. Create a sample C++ class based program for demonstrating the use of Object oriented Design Patterns, then compile and execute</td>
</tr>
</tbody>
</table>
CSP-301: Open-Source Software Technologies Lab

<table>
<thead>
<tr>
<th>Credits-1</th>
<th>L: T: P: C: 0:0:2:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Learning Basics of LAMP Server</td>
</tr>
<tr>
<td></td>
<td>i. Installation And Configuration of LAMP Server on Linux (Ubuntu)</td>
</tr>
<tr>
<td></td>
<td>ii. Creating simple Database in MySql Server performing queries</td>
</tr>
<tr>
<td>12</td>
<td>Learning A Deep Dive in MySql</td>
</tr>
<tr>
<td></td>
<td>i. MySql Administrator: Monitoring the Server and User Administration</td>
</tr>
<tr>
<td></td>
<td>ii. Mysql Admin, Backup and restore, User Account Rights Management</td>
</tr>
<tr>
<td>14</td>
<td>Basics of PHP Web Programming</td>
</tr>
<tr>
<td></td>
<td>i. A PHP code to demonstrate the usage of Variable, String, Array and Control Structure</td>
</tr>
<tr>
<td>15</td>
<td>Some Deep Dive in PHP Programming</td>
</tr>
<tr>
<td></td>
<td>i. A PHP Program to implement customized functions, Form Handling Strategies.</td>
</tr>
<tr>
<td></td>
<td>ii. A PHP Program to demonstrate the use of PHP mail () Function</td>
</tr>
<tr>
<td>16</td>
<td>Learning Database Connectivity between PHP and MySql</td>
</tr>
<tr>
<td></td>
<td>i. Create a login Control for a web page to demonstrate the use of Connectivity and Basic retrieval of data from database</td>
</tr>
<tr>
<td>17</td>
<td>Understanding build systems - constructing makefiles and using make, using autoconf and autogen to automatically generate makefiles tailored for different development environments, Using flex (lex) and bison (yacc) to design parsers.</td>
</tr>
<tr>
<td>18</td>
<td>Using the GNU Compiler Collection - getting acquainted with the the GNU compiler tools - the C preprocessor (cpp), the C compiler (gcc) and the C++ compiler (g++), and the assembler (gas).</td>
</tr>
<tr>
<td>19</td>
<td>Setting up web servers - using Apache (for HTTP services), Setting up proxy services, printer services, firewall.</td>
</tr>
</tbody>
</table>

TEXTBOOKS:

8. An Introduction to GCC, Brian Gough. URL: http://www.networktheory.co.uk/docs/gccintro/
Course Objectives:

1. To learn the implementation of linear data structures for concurrency.
2. To learn the implementation of advanced data structures such as search trees and heaps.
3. To explore the advanced concurrent data structures such as a hash table and Priority Queue.
4. To learn to apply principles of efficient algorithm design and learn various advanced algorithms.
5. Strengthen the ability of the students to identify and apply the suitable data structure for the given real-world problem.
6. Gain knowledge in practical applications of data structures.

Course Outcomes

1. Develop recursive algorithms as they apply to the Optimal binary search tree, AVL tree, and Red-Black trees.
2. Understand the concept of ADT using hashing techniques.
3. Understand Advanced Heap Structures suitable for solving Computational problems involving Optimization and analyzing these data structures using amortized analysis.
4. Implement advanced concurrent structures such as hash table & priority queue.
5. Come up with the analysis of efficiency and proof of correctness. Ability to select the data structures that efficiently model the information in a problem.

List of Programs:

1. Write a program for AVL Tree to implement all cases (LL, RR, RL, LR rotation).
2. Write a program to implement Red-Black trees with insertion and deletion operations for the given input data as Strings.
3. Write a program to implement insertion, deletion, display, and search operations in the m-way B tree (i.e., a non-leaf node can have almost m children) for the given data as integers (Test the program for m=3, 5, 7).
4. Write a program to store k keys into an array of size n at the location computed using a hash function, loc = key % n, where k<=n and k takes values from [1 to m], m>n. To handle the collisions, use the following collision resolution techniques,
 i. Linear probing
 ii. Quadratic probing
 iii. Random probing
 iv. Double hashing/rehashing
 v. Chaining
5. Write a program to implement insertion, deletion, and display operation in Min-Max Heap for the given data as integers.
6. Write a program to perform the following operations:
 i. Insert an element into a binomial heap
 ii. Delete an element from a binomial heap.
 iii. Search for a key element in a binomial heap

7. Write a program to perform string matching using the Knuth-Morris-Pratt algorithm.

8. Write a program to perform string matching using the Boyer-Moore algorithm.

9. To create Merkel tree structure in the blockchain.

10. Write a Python program to illustrate the following comprehensions:
 i. List Comprehensions
 ii. Dictionary Comprehensions
 iii. Set Comprehensions
 iv. Tuple Comprehensions

TEXTBOOKS:

5. Allen B Downey, Think Python, 2e: How to Think Like a Computer Scientist, O'Reilly; 2nd edition (15 December 2015).

REFERENCE BOOKS:

CSP-303: High Performance Computing Lab

L: T: P: C: 0:0:2:1

Credits-1

Course objective:

In this course you will learn how to write faster code that is highly optimized for modern multi-core processors and clusters, using modern software development tools, performance profilers, specialized algorithms, parallelization strategies, and advanced parallel programming constructs in OpenMP and MPI.

Course Outcomes:

1. **Identify** different GPU architecture basics in terms of functional units.
2. **Learn** how to install parallel programming platforms OpenMP, CUDA platform.
3. **Apply** GPU kernel implementation using CUDA/OpenMP.
4. **Evaluating** program performance using architecture specific details like GPU thread scheduling, shared memory.
5. **Develop** process on GPU which uses huge datasets like image data, text data.

List of Programs:

The laboratory will require GPU based systems with OpenMP installed. The students be encouraged to configure the system. In the beginning, the students may undertake following preliminary exercises as below:

1. Analysis of Parallel Algorithms
2. Implementation using OpenMP
3. GPU kernel implementation for the given application.
4. Performance analysis using GPU memories.
5. Kernel reduction.
6. Profiling an application.

Once, the students are well versed with the environment, the exercises on the following may be taken. Datasets may be downloaded and used for the exercises:

1. Multiplication of Huge Matrices using CUDA
2. Sorting large data sets
3. Text Processing

4. Video Processing/ Image Analysis using CUDA

The list can be modified at the institute level depending upon the specialization of the faculty and availability of datasets.
CSP-304: Soft Computing Lab

L: T: P: C: 0:0:2:1 Credits-1

Course Objectives:

The course should enable the students to:

1. Understand Fuzzy concepts
2. Learn neural networks with back propagation and without preparation
3. Learn the operators of genetic algorithms
4. Design simple algorithms for pattern classification

Course Outcomes:

The course should enable the students to:

1. An understanding of fundamental concepts and methods of machine learning and its applications.
2. An ability to analyze and evaluate simple algorithms for pattern classification.
3. Able to design neural networks with back propagation and without preparation.
4. Implement the operators of geneticalgorithms.
5. An ability to design simple algorithms for pattern classification, code them with Python programming language and test them with benchmark data sets.

List of Programs:

1. Introduction to Matlab/Python, Arrays and array operations, Functions and Files. Familiarization with a few ML Tools such as Excel, WEKA, R, Python and TensorFlow.
2. Study of neural network toolbox and fuzzy logic toolbox.
3. Simple implementation of Artificial Neural Network and Fuzzy Logic
4. Implementation of latest soft computing techniques using one of the above tools.
5. Regression (single and Multiple Variables) linear and non-liner;
6. Logistic regression
7. Classifiers: K-NN, Naïve Bayes Classifier, Perceptron, Multi Layer Perceptron
8. Clustering Algorithms: K-Means , DB-Scan
9. Applications of ANN and SVM using ML tools
Course objectives:

1. Provide an overview of the concepts relating to the design of human-computer interfaces in ways making computer-based systems comprehensive, friendly and usable.

2. Understand the theoretical dimensions of human factors involved in the acceptance of computer interfaces.

3. Understand the important aspects of implementation of human-computer interfaces.

4. The course helps to learn basics concepts of field such as, design rules and guidelines, prototyping and design patterns for interactive systems.

5. Introduction to the key areas, accessing and design developments in the field. The course aims, understanding and importance of UI its design and mistakes.

Course Outcomes:

After the completion of course the student will able to:

1. Design effective dialog for HCI.
2. Design effective HCI for individuals and persons with disabilities.
3. Assess the importance of user feedback.
4. Explain the HCI implications for designing multimedia/ ecommerce/ e-learning Web sites.
5. Develop meaningful user interface.

UNIT – I

UNIT – II

Human Computer Interaction (CST-321)

L: T: P: C: 3:0:0:3

Credits-3

UNIT – III

MODELS AND THEORIES: HCI Models: Cognitive models: Socio-Organizational issues and stakeholder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.

UNIT – IV

UNIT – V

WEB INTERFACE DESIGN: Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow – Case Studies

TEXTBOOKS:

REFERENCE BOOKS:

1. Human – Computer Interaction. ALAN DIX, JANET FINCAY, GRE GORYD, ABOWD, RUSSELL BEALG, PEARSON.
2. Interaction Design PRECE, ROGERS, SHARPS. Wiley Dreamtech.
Course Objectives:

- The program will prepare our students to be successful professionals in the field with solid fundamental knowledge of software engineering.
- Be successful professionals in the field with solid fundamental knowledge of software engineering.
- Utilize and exhibit strong communication and interpersonal skills, as well as professional and ethical principles when functioning as members and leaders of multi-disciplinary teams.
- Apply their foundations in software engineering to adapt to readily changing environments using the appropriate theory, principles and processes.

Course Outcomes:

After the completion of course the student will able to:

1. Explain various software characteristics and analyze different software Development Models.
2. Demonstrate the contents of a SRS and apply basic software quality assurance practices to ensure that design, development meet or exceed applicable standards.
3. Compare and contrast various methods for software design.
4. Formulate testing strategy for software systems, employ techniques such as unit testing, Test driven development and functional testing.
5. Manage software development process independently as well as in teams and make use of Various software management tools for development, maintenance and analysis.

UNIT – I 8Hrs

UNIT – II

UNIT – III

UNIT – IV

UNIT – V

Software Engineering (CST-322)

L: T: P: C: 3:0:0:3 Credits-3

TEXTBOOKS:

REFERENCE BOOKS:

2. Ian Sommerville, Software Engineering, Addison Wesley.
4. P fleeger, Software Engineering, Macmillan Publication
Python Programming (CST-323)

L: T: P: C: 3:0:0:3

Credits-3

Course Objectives:

- To acquire programming skills in core Python.
- To acquire Object Oriented Skills in Python
- To develop the skill of designing Graphical user Interfaces in Python
- To develop the ability to write database applications in Python

Course Outcomes:

After the completion of course the student will able to:

1. Define the syntax and semantics of python programming language and Understand control flow statements, strings and functions.
2. Determine the methods to create and manipulate python programs by utilizing the data structures like lists, dictionaries, tuples and sets.
3. Annotate the concepts of files, exception handling and also apply the object-oriented programming concept by creating classes and objects.
4. Illustrate and use some of the libraries available with python.
5. Applying the problem-solving concepts to various applications using python.

UNIT - I 8 Hour

UNIT - II 8 Hour

UNIT - III 8 Hour

UNIT - IV 8 Hour

FILES, EXCEPTIONS, CLASSES AND OBJECTS: Files and exception: Text files - Reading and writing files - Format operator - Command line arguments - Errors and exceptions - Handling exceptions - Classes and Objects: Defining classes - Creating Objects – Data abstraction – Class constructor – Class variables and Object variables – Public and Private data members – Private Methods; Illustrative programs: Word count - Copy file - Creating user defined exception - Creating student class and object.

UNIT - 8 Hour

Illustrative Programs: Multiplying a Matrix by a Vector, Solving Linear System of Equations - Using Pandas to Open CSV files - Creating a Single plot.

TEXTBOOKS:

Python Programming (CST-323)

L: T: P: C: 3:0:0:3

Credits-3

REFERENCE BOOKS:

Data Preparation and Analysis (CST-313)

L: T: P: C: 3:1:0:4

Credits-4

Course objective: 40: Hours

This course gives an overview of Big Data, i.e., storage, retrieval and processing of big data. In addition, it also focuses on the “technologies”, i.e., the tools/algorithms that are available for storage, processing of Big Data. It also helps a student to perform a variety of “analytics” on different data sets and to arrive at positive conclusions.

1. To get hands on Descriptive Statistics, Probability Distributions, Inferential Statistics etc.
2. A brief introduction about big data analytics and its technologies like Hadoop Map reduce.
3. Processing big data.
4. Employing Hadoop Map Reduce.

Course Outcomes:

1. Students will develop relevant programming abilities.
2. Students will demonstrate proficiency with statistical analysis of data.
3. Students will develop the ability to build and assess data-based models.
4. Students will execute statistical analyses with professional statistical software. Students will demonstrate skill in data management.
5. Students will apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively

UNIT - I 8 Hour

UNIT - II 8 Hour

INTRODUCTION TO BIG DATA: Big Data and its Importance, Four V’s of Big Data, Drivers for Big Data, Introduction to Big Data Analytics, Big Data Analytics applications. BIG DATA TECHNOLOGIES: Hadoop’s Parallel World, Data discovery, Open source technology for Big Data Analytics, cloud and Big Data, Predictive Analytics, Mobile Business Intelligence and Big Data, Crowd Sourcing Analytics, Inter- and Trans-Firewall Analytics, Information Management.
UNIT - III

Data Preparation and Analysis (CST-313)

L: T: P: C: 3:1:0:4

Credits-4

PROCESSING BIG DATA: Integrating disparate data stores, Mapping data to the programming framework, Connecting and extracting data from storage, transforming data for processing, subdividing data in preparation for Hadoop Map Reduce.

UNIT - IV

HADOOP MAPREDUCE: Employing Hadoop Map Reduce, Creating the components of Hadoop Map Reduce jobs, distributing data processing across server farms, Executing Hadoop Map Reduce jobs, monitoring the progress of job flows, The Building Blocks of Hadoop Map Reduce Distinguishing Hadoop daemons, Investigating the Hadoop Distributed File System Selecting appropriate execution modes: local, pseudo-distributed, fully distributed.

UNIT - V

BIG DATA TOOLS AND TECHNIQUES: Installing and Running Pig, Comparison with Databases, Pig Latin, User- Define Functions, Data Processing Operators, Installing and Running Hive, Hive QL, Querying Data, User-Defined Functions, Oracle Big Data.

TEXTBOOKS:

3. Rajaraman, A., Ullman, J. D., Mining of Massive Datasets, Cambridge University Press, United Kingdom, 2012

REFERENCE BOOKS:

Secure Software Design & Enterprise Computing (CST-314)

L: T: P: C: 3:1:0:4 Credits-4

Course Outcomes: 40: Hours

1. Understand Software process vulnerabilities for an organization.
3. Able to administer Enterprise System.
4. Troubleshoot Enterprise Network.
5. Develop secure software which can defend against attackers

UNIT - I 8 Hour
Secure Software Design Identify software vulnerabilities and perform software security analysis, Master security programming practices, Master fundamental software security design concepts, Perform security testing and quality assurance.

UNIT - II 8 Hour
Enterprise Application Development Describe the nature and scope of enterprise software applications, Design distributed N-tier software application, Research technologies available for the presentation, business and data tiers of an enterprise software application, Design and build a database using an enterprise database system, Develop components at the different tiers in an enterprise system, Design and develop a multi-tier solution to a problem using technologies used in enterprise system, Present software solution.

UNIT - III 8 Hour
Enterprise Systems Administration Design, implement and maintain a directory-based server infrastructure in a heterogeneous systems environment, Monitor server resource utilization for system reliability and availability, Install and administer network services (DNS/DHCP/Terminal Services/Clustering/Web/Email).

UNIT - IV 8 Hour
Enterprise Network Obtain the ability to manage and troubleshoot a network running multiple services, Understand the requirements of an enterprise network.
UNIT - V 8 Hour

Defending Applications Handle insecure exceptions and command/SQL injection, Defend web and mobile applications against attackers, software containing minimum vulnerabilities and flaws.

TEXTBOOKS:

1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett
3. Principles of Secure Software Design: Dr. Raimundas Matulevičius

REFERENCE BOOKS:

1. Architecting Applications for the Enterprise: Dino Esposito and Andrea Saltarello; Microsoft Press.
2. Enterprise Applications Administration: Jeremy Faircloth; Morgan Kaufmann publishers
4. SQL Injection Attacks and Defense: Justin Clarke; Elsevier Publishing;
Computer Vision (CST-315)

Course Outcomes:

1. Be familiar with both the theoretical and practical aspects of computing with images.
2. Have described the foundation of image formation, measurement, and analysis.
3. Have implemented common methods for robust image matching and alignment.
4. Understand the geometric relationships between 2D images and the 3D world.
5. Have gained exposure to object and scene recognition and categorization from images

UNIT - I 8-Hour

UNIT - II 8-Hour

Feature Extraction Edges – Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.

UNIT - III 8-Hour

Shape Representation, Segmentation and Object Recognition Shape Representation and Segmentation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and Wavelet Descriptors, Medial Representations, Multiresolution analysis, Hough transforms and other simple object recognition Methods, Shape Correspondence and Shape Matching, Shape priors for recognition.

UNIT - IV 8-Hour

UNIT - V

8-Hour

Application: Photo album, Face detection, Face recognition, Eigen faces, Active appearance and 3D shape models of faces, In-vehicle vision system: locating roadway, road markings, identifying road signs, locating pedestrians

TEXTBOOKS:

Computer Vision (CST-315)

L: T: P: C: 3:1:0:4

Credits-4

5. Dictionary of Computer Vision and Image Processing, by Fisher et al.

REFERENCE BOOKS:

2. Dictionary of Computer Vision and Image Processing, by Fisher et al.
Cyber Security (CST-306)

L: T: P: C: 3:1:0:4

Credits-4

Course Outcomes:

1. Critique and assess the strengths and weaknesses of general cyber security models, including the CIA triad.
2. Appraise the interrelationships among elements that comprise a modern security system, including hardware, software, policies, and people.
3. Assess how all domains of security interact to achieve effective system-wide security at the enterprise level.
4. Compare the interrelationships among security roles and responsibilities in a modern information-driven enterprise—to include interrelationships across security domains (IT, physical, classification, personnel, and so on).
5. Assess the role of strategy and policy in determining the success of information security.

UNIT - I

The Security Environment: Threats, vulnerabilities, and consequences Advanced persistent threats, The state of security today, Why security matters to DoD? Principles of Cybersecurity- The interrelated components of the computing environment Cybersecurity models (the CIA triad, the star model, the Parkerian hexad) Variations on a theme: computer security, information security, and information assurance.

UNIT - II

UNIT - III

UNIT - IV

UNIT - V 8-Hour

Risk Management: Principles of risk, Types of risk, Risk strategies, The Risk Management Framework (RMF), Security Metrics and Key Performance Indicators (KPIs) - The challenge of security metrics, What makes a good metric? Approaches to security metrics, Metrics and FISMA

TEXTBOOKS:

REFERENCE BOOKS:

5. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC
Course Objectives: 40-Hours

1. Underlying machine learning theories.
2. Machine learning problems corresponding to different applications.
3. Machine learning algorithms along with their strengths and weaknesses.

Course Outcomes

1. Apply machine learning: data, model selection, model complexity, etc.
2. Apply design and analyze the popular machine learning approaches.
3. Demonstrate various machine learning algorithms in a wide range of real-world applications.
4. Appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning.
5. Be able to design and implement various machine learning algorithms in a range of real-world applications.

UNIT - I 4-Hour

UNIT - II

UNIT - III 4-Hour

Bayesian and Computational Learning: Bayes Theorem, Concept Learning, Maximum Likelihood, Minimum Description Length, Principle Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian Belief Network, EM Algorithm, Probability Learning, Sample Complexity, Finite and Infinite Hypothesis Spaces, Mistake Bound Model.

UNIT - IV 4-Hour

Instant Based Learning: K- Nearest Neighbor Learning, Locally weighted Regression, Radial Bases Functions, Case Based Learning.
Machine Learning (CST-303)

L: T: P: C: 3:0:0:3
Credits-3

Advanced Learning: Learning Sets of Rules, Sequential Covering Algorithm, Learning Rule Set, First Order Rules, Sets of First Order Rules, Induction on Inverted Deduction, Inverting Resolution, Analytical Learning, Perfect Domain Theories, Explanation Base Learning, FOCL Algorithm, Reinforcement Learning Task, Q-Learning, Temporal Difference Learning.

UNIT - V
4-Hour

Analytical Learning and Reinforced Learning: Perfect Domain Theories, Explanation Based Learning, Inductive Analytical Approaches, FOCL (First Order Combined Learner) Algorithm, Reinforcement Learning, Task, Q-Learning, Temporal Difference Learning.

TEXTBOOKS:

REFERENCE BOOKS:

Wireless Sensor Networks (CST-304)

L: T: P: C: 3:0:0:3

Course Objectives: 40-Hours

1. To understand the basics of Sensor Networks.
2. To learn various fundamental and emerging protocols in the Wireless Sensor Network (WSN).
3. To study about the issues pertaining to establishment and management of sensor networks.
4. To understand the platforms and tools of sensor networks.
5. To understand various security practices and protocols of Sensor networks.

Course Outcomes

1. Identify the functions of various components in sensor.
2. Work with MAC and network layer protocols.
3. Illustrate the issues pertaining to the establishment and management of sensor networks.
4. Design and deploy a Sensor network environment for different type of applications.
5. Implement various security techniques in WSN.

UNIT - I 4-Hour

UNIT - II 4-Hour

Sensing Techniques: Types of Sensors, Sensing Coverage, High-Level Sensors, Human as a Sensor, Actuators, sensor calibration, Detecting Errors.

UNIT - III 4-Hour
Wireless Sensor Networks (CST-304)

Credits-3

UNIT - IV 4-Hour

Scheduling and Data Management: Survey on Data Routing in Wireless Sensor Networks, Data Centric Protocols: SPIN, Directed Diffusion, REAR, Rumor Routing

Hierarchical Routing: LEACH, Energy Efficient Weight-Clustering Algorithm in WSN, Self-Organizing Protocol

UNIT - V 4-Hour

TEXTBOOKS:

REFERENCE BOOKS:

Smart Sensor and Internet of Things (CST-305)

L: T: P: C: 3:0:0:3
Credits-3

Course Objectives:

1. To provide knowledge on Sensor Principles.
2. To provide familiarity with different sensors and their application in real life.
3. To understand Basics of IoT and enabling technologies.
4. To design IoT applications using Arduino and Raspberry pi.

Course Outcomes

1. Demonstrate knowledge on the characteristics of sensors and principles of IoT.
2. Select appropriate sensors for the given application development.
3. Design basic IoT Applications using Arduino.
4. Design IoT Applications using Raspberry Pi.
5. Perform Data Acquisition and analysis using Cloud and Tkinter.

UNIT - I 8-Hour

Introduction to Sensors: Sensors, Criteria to choose a Sensor, Generation of Sensors.

Optical Sources and Detectors: Electronic and Optical properties of semiconductor as sensors, LED, Semiconductor lasers, Fiber optic sensors, Thermal detectors, Photo multipliers, photoconductive detectors.

Strain, Force, Torque and Pressure sensors: Strain gages, strain gage beam force sensor, piezoelectric force sensor, load cell, torque sensor, Piezo-resistive and capacitive pressure sensor, optoelectronic pressure sensors, vacuum sensors.

UNIT - II 8-Hour

Position, Direction, Displacement, Level sensors Velocity and Acceleration sensors.
Temperature sensors: thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensor.

Wearable Sensors: From fibers to textile sensors - Interlaced network –Textile sensors for physiological state monitoring - Biomechanical sensing –Non-invasive sweat monitoring by textile sensors and other applications. FBG sensor in Intelligent Clothing and Biomechanics.

UNIT - III 8-Hour

Introduction to Internet of Things: Characteristics of IoT, Design principles of IoT, IoT Architecture and Protocols, Enabling Technologies for IoT, IoT levels and IoT vs M2M.
Smart Sensor and Internet of Things (CST-305)

L: T: P: C: 3:0:0:3

Credits-3

IoT Design Methodology: Design methodology, Challenges in IoT Design, IoT System Management, IoT Servers.

UNIT - IV

UNIT - V

Data Acquisition with Python and Tkinter: Basics-CSV file, Storing Arduino data with CSV file, plotting random numbers using matplotlib, plotting real-time from Arduino, Integrating the plots in the Tkinter window.

Connecting to the Cloud: Smart IoT Systems, DHT11 Data Logger with ThingSpeak Server, Ultrasonic Sensor Data Logger with ThingSpeak Server, Air Quality Monitoring System and Data Logger with ThingSpeak Server, Landslide Detection and Disaster Management System, Smart Motion Detector and Upload Image to gmail.com.

TEXTBOOKS:

REFERENCE BOOKS:

Data Centre Management (CST-306)

L: T: P: C: 3:0:0:3

Credits-3

Course Objectives: 40-Hours

1. To deliver foundation knowledge about data centre facilities infrastructure.
2. To become an authority of expertise for service providers.
3. To provide knowledge on data centers network infrastructures, designs, and security provisions.

Course Outcomes

1. Conduct data centre space planning and energy calculations.
2. Evaluate contrasting data centre design techniques, and security provisions.
3. Design data centre networking infrastructure to provide Load Balancing, Segmentation, scalability, monitoring and lights-out management.
4. Describe security requirements and solutions and identify parameters for managing and monitoring storage infrastructure in Data centres.
5. Incorporate professional standards into Data Centre Infrastructure Management (DCIM).

UNIT - I 8-Hour

Overview of data center: Data center defined, Goals, Facilities, Role of Data Centers in Enterprise and in service provider environment, Application Architecture Model, Client Server Model, n-tier model, multitier architecture, application environment.

Data Centre Architecture: Data Centre requirements, Data center Prerequisite, Budget construction, Selection of geographical location, Selection of building, Architecture Aggregation layer, Access layer, Storage layer, Data center Transport Layer, data center services, IP infrastructure services, Application Services, Security Services, Storage services, business continuance infrastructure services.

UNIT - II 8-Hour

Data Centre Design Overview: Characteristics of an outstanding design, Guidelines for planning Data Centre, Data center structure, Raised Floor Design and development, Design and plan against Vandalism, Types of server farm and data center, internet server farm, intranet server farm, extranet server farm, corporate data center, data center topology.

UNIT - III 8-Hour

Network Infrastructure in a data center: Modular cabling design, Point of distribution, ISP network Infrastructure, ISP WAN links.
Data Centre Management (CST-306)

L: T: P: C: 3:0:0:3 Credits-3

Load balancing: load balancing terminologies, Advantage of load balancing, types of load balancing, implementing network with load balancing switches.

UNIT - IV 8-Hour

UNIT - V 8-Hour

Data center maintenance: Network Operation Centre, Network Monitoring, Data center physical security, data center logical security.

Server Administration: Best practices for system administration, system administration work automation.

Case Study: IBM Data Centre Technology, Google Data Centre, Blade Server in Data Centre.

TEXTBOOKS:

2. Mauricio Arregoces, Mauizio Portolani, Data Centre fundamental, Cisco Press.

REFERENCE BOOKS:

1. Hwaiyu Geng, Data Centre Handbook, Wiley.
CST-317 Cloud Computing

Course Objectives

1. The fundamental ideas behind Cloud Computing, the evolution of the paradigm, its applicability; benefits, as well as current and future challenges;
2. the basic ideas and principles in data centre design; cloud management techniques and cloud software deployment considerations;
3. Different CPU, memory and I/O virtualization techniques that serve in offering software, computation and storage services on the cloud;
4. cloud storage technologies and relevant distributed file systems,
5. the variety of programming models and develop working experience in several of them.

Course Outcomes:

1. Identify the architecture and infrastructure of cloud computing, including SaaS, PaaS, IaaS, public cloud, private cloud, hybrid cloud.
2. Describe the core issues of cloud computing such as security, privacy, and interoperability to choose the appropriate technologies, algorithms, and approaches for the identified problems.
3. Analyze various cloud computing solutions and Evaluate cloud Storage systems and Cloud security, the risks involved, its impact.
4. Apply knowledge for solving real life cloud computing problem scenario and illustrate solutions.
5. Develop appropriate cloud computing solutions and recommendations according to the applications used.

UNIT - I

UNIT - II

CST-317 Cloud Computing

L: T: P: C: 3:0:0:3 Credits-3

UNIT - III 6- Hour

UNIT - IV 6- Hour

UNIT - V 6- Hour

TEXTBOOKS:

5. George Reese, Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Transactional Systems for EC2 and Beyond (Theory in Practice), OReilly, 2009.

REFERENCE BOOKS:

1. Cloud Computing (2nd Edition) by Dr. Kumar Saurab, Wiley India.

Cloud Computing CST-317

L: T: P: C: 3:0:0:3

Credits-3

4. Cloud Security by Ronald Krutz and Russell Dean Vines, Wiley-India
GPU Computing (CST-318)

Objective:

1. To learn parallel programming with graphics processing units (GPUs).
2. Students would learn concepts in parallel programming.
3. Students would learn to implement programs on GPUs, debugging and profiling parallel programs.

Course Outcomes:

1. Define terminology commonly used in parallel computing, such as efficiency and speedup.
2. Describe common GPU architectures and programming models.
3. Implement efficient algorithms for common application kernels, such as matrix multiplication.
4. Given a problem, develop an efficient parallel algorithm to solve it.
5. Given a problem, implement an efficient and correct code to solve it, analyze its performance, and give convincing written and oral presentations explaining the achievements.

UNIT – I 8Hrs.

Introduction: History, GPU Architecture, Clock speeds, CPU / GPU comparisons, Heterogeneity, Accelerators, Parallel Programming, CUDA OpenCL / OpenACC, Kernels Launch parameters, Thread hierarchy, Warps/Wavefronts, Threadblocks/Workgroups, Streaming multiprocessors, 1D/2D/3D thread mapping, Device properties, Simple Programs.

UNIT – II 8Hrs.

Memory: Memory hierarchy, DRAM / global, local / shared, private / local, textures, Constant Memory, Pointers, Parameter Passing, Arrays and dynamic Memory, Multi-dimensional Arrays, Memory Allocation, Memory copying across devices, Programs with matrices, Performance evaluation with different memories.

UNIT – III 8Hrs.

Synchronization: Memory Consistency, Barriers (local versus global), Atomics, Memory fence. Prefix sum, Reduction. Programs for concurrent Data Structures such as Worklists, Linked-lists. Synchronization across CPU and GPU.

Functions: Device functions, Host functions, Kernels functions, Using libraries (such as Thrust), and developing libraries.
UNIT – IV

GPU Computing (CST-318)

L: T: P: C: 3:0:0:3

Credits-3

Support: Debugging GPU Programs. Profiling, Profile tools, Performance aspects.

Streams: Asynchronous processing, tasks, Task-dependence, Overlapped data transfers, Default Stream, Synchronization with streams. Events, Event-based- Synchronization - Overlapping data transfer and kernel execution, pitfalls.

UNIT – V

Advanced Topics: Dynamic parallelism, Unified Virtual Memory, Multi-GPU, processing, Peer access, Heterogeneous processing.

Case Studies: Image Processing, Graph algorithms, Simulations, Deep Learning.

TEXTBOOKS:

2. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman.
3. GPU Computing and Applications: Yiyu Cai, Simon See; Springer;

REFERENCE BOOKS:

Digital Forensics (CST-319)

L: T: P: C: 3:0:0:3 Credits-3

Course Objectives:

1. To study the fundamentals of Computer Forensics
2. To learn, analyze and validate Forensics Data
3. To study the tools and tactics associated with Cyber Forensics

Course Outcomes:

4. Describe digital forensics and relate it to an investigative process.
5. Explain the legal issues of preparing for and performing digital forensic analysis based on the investigator's position and duty.
6. Perform basic digital forensics and Demonstrate use of digital forensics tools.
8. Recognize the state of the practice and the gaps in technology, policy, and legal issues.

UNIT – I 8Hrs.

Computer forensics fundamentals, Benefits of forensics, computer crimes, computer forensics evidence and courts, legal concerns and private issues.

UNIT – II 8Hrs.

Understanding Computing Investigations – Procedure for corporate High-Tech investigations, understanding data recovery work station and software, conducting and investigations.

UNIT – III 8Hrs.

Data acquisition- understanding storage formats and digital evidence, determining the best acquisition method, acquisition tools, validating data acquisitions, performing RAID data acquisitions, remote network acquisition tools, other forensics acquisitions tools.

UNIT – IV 8Hrs.

Processing crimes and incident scenes, securing a computer incident or crime, seizing digital evidence at scene, storing digital evidence, obtaining digital hash, reviewing case.
UNIT – V

Digital Forensics (CST-319) 8Hrs.

L: T: P: C: 3:0:0:3 Credits-3

Current computer forensics tools- software, hardware tools, validating and testing forensic software, addressing data-hiding techniques, performing remote acquisitions, E-Mail investigations- investigating email crime and violations, understanding E-Mail servers, specialized E-Mail forensics tool.

TEXTBOOKS:

REFERENCE BOOKS:

1. File System Forensic Analysis, by Brian Carrier, Addison-Wesley
4. The Basics of Digital Forensics, John Sammons, Elsevier
Big Data Analytics (CST-311)

L: T: P: C: 3:0:0:3 Credits-3

Course Objectives

- Understand the Big Data Platform and its Use cases
- Provide an overview of Apache Hadoop
- Provide HDFS Concepts and Interfacing with HDFS
- Understand Map Reduce Jobs
- Provide hands on Hadoop Eco System
- Apply analytics on Structured, Unstructured Data. Exposure to Data Analytics

Course Outcomes:

- Work with big data platform and explore the big data analytics techniques business applications.
- Design efficient algorithms for mining the data from large volumes.
- Analyze the HADOOP and Map Reduce technologies associated with big data analytics.
- Understand the fundamentals of various big data analytics techniques.
- Build a complete business data analytics solution.

UNIT – I 8Hrs.

UNIT – II 8Hrs.

UNIT – III 8Hrs.

UNIT – IV 8Hrs.

Big Data Analytics (CST-311)

L: T: P: C: 3:0:0:3 Credits-3

Frameworks: Applications on Big Data Using Pig and Hive – Data processing operators in Pig – Hive services – HiveQL – Querying Data in Hive - fundamentals of HBase and ZooKeeper - IBM InfoSphere BigInsights and Streams.

UNIT – V 8Hrs.

TEXTBOOKS:

REFERENCE BOOKS:

Big Data Analytics (CST-311)

L: T: P: C: 3:0:0:3

Data Science (CST-307)

L: T: P: C: 3:0:0:3

Credits: 3

Course Objectives: 40-Hours

1. Generalizable extraction of knowledge from data.
2. Engineering effective solutions.
3. Basic machine learning algorithms.
4. Building recommendation systems.
5. Considerate concepts on Graphs.

Course Outcomes:

1. Describe what Data Science is and the skill sets needed to be a data scientist, the Data Science Process and how its components interact.
2. Explain in basic terms what Statistical Inference means.
3. Identify probability distributions commonly used as foundations for statistical modeling. Fit a model to data.
4. Use R to carry out basic statistical modeling and analysis and APIs and other tools to scrap the web and collect data.
5. Apply basic tools (plots, graphs, summary statistics) to carry out EDA and apply EDA and the Data Science process in a case study.

UNIT - I 8- Hour

Introduction: What is Data Science? Big Data and Data Science hype, getting past the hype now? Data fication current landscape of perspectives, Skill sets needed, Statistical Inference, Populations and samples, Statistical modeling, probability, distributions, fitting a model, Introduction to R.

UNIT - II 8- Hour

Exploratory Data Analysis and the Data Science Process, Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA, The Data Science Process, Case Study: Real Direct (online real estate firm).

UNIT - III 8- Hour

Spam Filters, Naive Bayes, and Wrangling, Thought Experiment: Learning by Example, Naive Bayes, Fancy It Up: Laplace Smoothing, Comparing Naive Bayes to k-NN, Sample Code in bash, Scraping the Web: APIs and Other Tools, Jake’s Exercise: Naive Bayes for Article Classification.
Data Science (CST-307)

L: T: P: C: 3:0:0:3 Credits-3

Logistic Regression: Thought Experiments, Classifiers, M6D Logistic Regression Case Study, Media 6 Degrees Exercise.

UNIT - IV 8- Hour

UNIT - V 8- Hour

Mining Social-Network Graphs, Social networks as graphs, Clustering of graphs, direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs, Data Visualization, Basic principles, ideas and tools for data visualization.

Data Science and Ethical Issues: Discussions on privacy, security, ethics, A look back at Data Science.

TEXTBOOKS:

REFERENCE BOOKS:

2. Foster Provost and Tom Fawcet,— Data Science for Business: What You Need to Know about Data Mining and Data-analytic Thinkingl, O’Reilly Media, 2013.
Course Objectives: 40-Hours

1. To understand distributed system, and the desired properties of such systems are.
2. To list the principles underlying the functioning of distributed systems, describe the problems and challenges associated with these principles, and evaluate the effectiveness and shortcomings of their solutions.
3. To recognize how the principles are applied in contemporary distributed systems, explain how they affect the software design, and be able to identify features and design decisions that may cause problems.
4. To design a distributed system that fulfills requirements with regards to key distributed systems properties (such as scalability, transparency, etc.), be able to recognize when this is not possible, and explain why.
5. To build distributed system software using basic OS mechanisms as well as higher-level middleware and languages.
6. To understand the middleware technologies.

Course Outcomes

1. Explain what a distributed system is, why you would design a system as a distributed system, and what the desired properties of such systems are.
2. Specify the properties of distributed algorithms, so called liveness and safety Properties.
3. Models of distributed systems, including failure and timing model.
4. Master basic algorithms for failure detection, leader elections, broadcast and multicast, basic shared memory in distributed systems, agreement protocols, and group communication.
5. Practice in design and implementation of selected distributed algorithms in middleware designed for group communication.

UNIT - I 8- Hour

UNIT - II 8- Hour

Operating System Support- Introduction, OS layer, Protection, Processes and Threads, Communication and Invocation, Operating system architecture, Distributed File Systems-Introduction, File Service architecture, case study- SUN network file systems. Name Services-
Distributed Systems (CST-308)

L: T: P: C: 3:0:0:3 Credits-3

Introduction, Name Services and the Domain Name System, Case study of the Global Name Service, Case study of the X.500 Directory Service.

UNIT - III 8- Hour

Peer to Peer Systems - Introduction, Napster and its legacy, Peer to Peer middleware, Routing overlays, Overlay case studies-Pastry, Tapestry, Application case studies-Squirrel, Ocean Store. Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging. Coordination and Agreement - Introduction, Distributed mutual exclusion, Elections, Multicast communication, consensus, and related problems.

UNIT - IV 8- Hour

Transactions and Concurrency control - Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for concurrency Controls. Distributed Transactions - Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery, Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data.

UNIT - V 8- Hour

Security - Introduction, Overview of Security techniques, Cryptographic algorithms, Digital signatures, Case studies-Kerberos, TLS, 802.11 WiFi. Distributed shared memory, Design and Implementation issues, Sequential consistency and Ivy case study, Release consistency and Munin case study, other consistency models, CORBA case study- Introduction, CORBA RMI, CORBA Services.

TEXTBOOKS:

REFERENCE BOOKS:

Advanced Wireless and Mobile Networks (CST-309)

L: T: P: C: 3:0:0:3 Credits-3

Course Objectives: 40Hours

1. To study about advanced wireless network, LTE, 4G and Evolutions from LTE to LTE.
2. To study about wireless IP architecture, Packet Data Protocol and LTE network architecture.
3. To study about adaptive link layer, hybrid ARQ and graphs routing protocol.
4. To study about mobility management, cellular network, and micro cellular networks

Course Outcomes:

1. Familiar with the latest 4G networks and LTE.
2. Understand about the wireless IP architecture and LTE network architecture.
3. Familiar with the adaptive link layer and network layer graphs and protocol.
4. Understand about the mobility management and cellular network.
5. Understand about the wireless sensor network architecture and its concept.

UNIT - I 8- Hour

UNIT – II 8- Hour

UNIT – III 8- Hour

UNIT – IV

8- Hour

UNIT – V

8- Hour

TEXTBOOKS:

REFERENCE BOOKS:

Web Analytics and Development (CST-310)

L: T: P: C: 3:0:0:3

Credits-3

Course Objectives: 40-Hours

1. To Learn the fundamentals of web Analytics
2. To understand the web analytics tools
3. To learn the concepts of web data collection.
4. To acquire knowledge web analytics strategy.
5. To study about connection and robustness.

Course Outcomes

1. Update the knowledge about web analytics.
2. Demonstrate various web analytics tools.
3. Acquire the knowledge of web data collection.
4. Understand web analytics strategy.
5. Familiar about making connection and robustness social involvements.

UNIT - I 8- Hour

UNIT - II 8- Hour

UNIT - III 8- Hour

UNIT – IV
Web Analytics and Development (CST-310)

L: T: P: C: 3:0:0:3

Credits-3

WEB ANALYTICS STRATEGY: Component of Web Analytics Strategy – Customer Centric Focus – Business Problem Solving Focus – Reporting vs Analysis – IT and Business Strength – Clickstream vs Web 2.0 – Vendor Specific Options and Issues.

UNIT - V 8- Hour

TEXTBOOKS:

REFERENCE BOOKS:

CST-301: Open-Source Software Technologies

L: T: P: C: 3:1:0:4

Course Objectives:

1. Understand the difference between open-source software and commercial software.
2. Familiarity with Linux operating system.
3. Understanding and development of web applications using open-source web technologies like Apache, My Sql and PHP (LAMP/XAMP).

Course Outcomes

1. Install and manage and understand the difference between open source software and commercial software.
2. Identify, install, and run Linux operating system.
3. Identify, install open source web technologies Apache, My Sql, PHP.
4. Develop web applications using LAMP.
5. Write session control PHP code for a website.

UNIT - I

Open Source and Linux: Open Source Definition, The distribution terms of open source software, open source technology importance, Free and Open Source Software (FOSS), LAMP (Linux, Apache, MySQL, PHP, Python, and Perl.). Benefits, Perspectives of Open Source software Linux and Open Source. Development process and business model of companies involved in open source (e.g., Mozilla).

UNIT - II

Linux Administration: Linux Vs Windows, Installation of Linux interactively, perform user and group administration, Administer the Linux printing subsystem, automate tasks with at, cron, Install, update, query and remove software packages with RPM.

Linux Usage Basics: Logging into the system, changing users and editing text files. Running Commands and Getting Help, Browsing the File system, Users, Groups and Permissions.

UNIT - III

CST-301: Open-Source Software Technologies

UNIT - IV

UNIT - V

MySQL Server and Application: Configuring MySQL Server, working with MySQL Databases, MySQL Tables, SQL Commands – INSERT, SELECT, UPDATE, REPLACE, DELETE. Date and Time functions in MySQL. PHP – MySQL.

Application Development: Connecting to MySQL with PHP, inserting data with PHP, Retrieving data with PHP. Developing PHP scripts for dynamic web page like Feedback form, online admission form, online test.

TEXTBOOKS:

1. James Lee, Brent Ware, Open-Source Web Development with LAMP: Using Linux, Apache, MySQL, Perl, and PHP, Addison Wesley.

REFERENCE BOOKS:

CST-302: Advanced Data Structures and Algorithms

Course Objectives:

1. Introduces the elementary discrete mathematics for computer science and engineering.
2. Expose the student to the algorithm analysis techniques, the theory of reductions, and the classification of problems into complexity classes like NP.
3. To introduce various advanced concurrent structures such as hash table and Priority Queue.
4. Comprehend and select algorithm design approaches in a problem-specific manner.

Course Outcomes

1. Understand Advanced Tree Structures for the design of efficient algorithms
2. Understand Advanced Heap Structures suitable for solving Computational problems involving Optimization and analyzing these data structures using amortized analysis.
3. Implement advanced concurrent structures such as hash table & priority queue.
4. Come up with the analysis of efficiency and proof of correctness.
5. Understand the basic operation of python data structure and Blockchain along with the data structures used in it and the challenges in Blockchain data.

UNIT - I

UNIT - II

UNIT - III

ADVANCED CONCURRENT STRUCTURES: Hashing – closed-address and open-addressed hash sets — Lock-based closed-address Concurrent hash set, Cuckoo Hashing. Lock-based concurrent skip lists –An Unbounded Heap-Based Concurrent Priority Queue – skip list-based unbounded priority queues.
UNIT - IV

Approximation Algorithms: Need for approximation algorithms: Introduction to P, NP, NP-Hard and NP-Complete; Deterministic, non-Deterministic Polynomial-time algorithms; Knapsack, TSP, Set Cover, Open Problems.

Randomized Algorithms: Introduction, Type of Randomized Algorithms, Quick Sort, Min-Cut, 2-SAT; Game Theoretic Techniques, Random Walks.

Online Algorithms: Introduction, Online Paging Problem, Adversary Models, k-server Problem.

Genetic Algorithm: Introduction to GA, implementation in Python, problem-solving using GA such as subset problem, TSP, Knapsack.

UNIT - V

Blockchain Data Structure: - Blockchain Architecture, Blockchain Data Structures, and Data types, Contract Data, Problems to be solved in Blockchain data analysis

Advance Data Structure in Python: List, Tuple, Dictionary, Set, etc.

TEXTBOOKS:

5. Allen B Downey, Think Python, 2e: How to Think Like a Computer Scientist, O'Reilly; 2nd edition (15 December 2015).

REFERENCE BOOKS:

CST-302: Advanced Data Structures and Algorithms

L: T: P: C: 3:1:0:4

High Performance Scientific Computing (CST-311)

L: T: P: C: 3:1:0:4

Credits-4

Course Objective: 40-Hours

1. Introduce the basic concepts related to HPC architecture and parallel computing;

2. To discuss various computational techniques for studying soft matter systems.

3. To apply these concepts to examine complex biomolecular/materials systems that generally require large-scale HPC platform with hybrid CPU-GPU architectures.

4. OpenMP on top of Fortran for parallel programming of sharedmemory computers

Course Outcomes:

1. Solve the challenges of High Speed Networks and its related performance.

2. Communicate effectively the principles used in High Performance computing.

3. Explain the basics of high speed networking technologies and to demonstrate the knowledge of network planning and optimization.

4. Describe the key components and technologies involved in building the state of art network design applications, concepts to optimize performance of high-speed networks.

5. Design and configure networks to support a specified set of applications.

UNIT - I 8-Hour

Introduction: Single Processor Computing, Parallel Computing, Parallel System Organization

Numerical Linear Algebra: High Performance Linear Algebra, Numerical Treatment of Differential Equations

UNIT - II 8-Hour

Applications: Molecular Dynamics, Sorting, Graph Analytics, N-body Problems, Monte Carlo Methods, Computation Biology.

UNIT - III 8-Hour

Interactive Python using IPython, and the IPython Notebook, Python scripting and its uses in scientific computing, Subtleties of computer arithmetic that can affect program correctness.
UNIT - IV 8- Hour

Fortran 90, a Compiled language: That is widely used in scientific computing, Makefiles for building software and checking dependencies, Analyze the cost of data communication. Registers, cache, main memory, and how this memory hierarchy affects code performance.

UNIT - V 8- Hour

OpenMP on Top of Fortran: OpenMP on top of Fortran for parallel programming of shared memory computers, such as a multicore laptop., MPI on top of Fortran for distributed memory parallel programming, such as on a cluster, Parallel computing in IPython, Debuggers, unit tests, regression tests, verification and validation of computer codes, Graphics and visualization of computational results using Python.

TEXTBOOKS:

1. A beginner's guide to GPU programming and parallel computing with CUDA 10.x and C/C++, Jaegeun Han, Bharatkumar Sharma

REFERENCE BOOKS:

2. Parallel and High-Performance Computing, Robert Robey, Manning.
3. Introduction to High Performance Scientific Computing, David Chopp, SIAM
Course Objectives: 40-Hours
The main objective of the course is to expose the students to soft computing, various types of soft computing techniques, and applications of soft computing. Upon completion of this course, the student should be able to get an idea on:
1. Fuzzy Logic, Various fuzzy systems and their functions.
2. Neural Networks, architecture, functions and various algorithms involved.
3. Genetic algorithms, its applications and advances.
4. Simple implementation of Artificial Neural Network and Fuzzy Logic.

Course Outcomes:
1. Identify and describe soft computing techniques and their roles in building intelligent machines.
2. Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.
3. Apply genetic algorithms to combinatorial optimization problems.
4. Evaluate and compare solutions by various soft computing approaches for a given problem.
5. Use various tools to solve soft computing problems.

UNIT – I 8 Hrs

UNIT – II 8 Hrs

UNIT - III

UNIT – IV 8 Hrs
Genetic Algorithms: Goals of optimization, comparison with traditional methods, schemata, Terminology in GA – strings, structure, parameter string, data structures, operators, coding
Fitness function, algorithm, applications of GA in Machine Learning: Machine Learning Approach to Knowledge Acquisition.

UNIT – V 8 Hrs

TEXTBOOKS:

REFERENCE BOOKS:

Course Objectives: Students will be able to:

1. To understand the fundamentals of research in today’s world controlled by technology, ideas, concept, and creativity.
2. To understand different methods of research designing and data collections.
3. To understand the methods of report writing and its different methods of interpretations.
4. To understand research ethics and methods of research publications
5. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Course Outcomes:

1. To understand research problem formulation.
2. To study research design and method of data collections.
3. To study methods of report writing.
4. To follow research ethics.
5. To enhance student’s competence to discover new inventions.

Syllabus Contents:

UNIT 1: FUNDAMENTAL OF RESEARCH
Meaning of research; objectives of research; basic steps of research; criteria of good research; Research methods vs. Methodology. Types of research –criteria of good research; Meaning of research problem; selection of research problem; Approaches of investigation of solutions for research problem, Errors in selecting a research problem, Scope and objectives of research problem, Review of related literature- Meaning, necessity and sources.

UNIT 2: RESEARCH DESIGN AND DATA COLLECTION
Research design: Types of research design- exploratory, descriptive, diagnostic and experimental; Variables- Meaning and types; Hypothesis- Meaning, function and types of hypothesis; Null/Alternative hypothesis; Sampling- Meaning and types of sampling; Probability and Non-Probability; Tools and techniques of data collection- questionnaire, schedule, interview, observation, case study, survey etc.

UNIT 3: REPORT WRITING AND ITS INTERPRETATION
Syllabus
Research Methodology and IPR (AHT-302)

L:T:P:: 2:0:0

Unit 4: RESEARCH ETHICS AND SCHOLARY PUBLISHING

Ethics-ethical issues, ethical committees (human & animal); scholarly publishing- IMRAD concept and design of research paper, citation and acknowledgement, plagiarism and its concept and importance for scholar.

Unit 5: INTELLECTUAL PROPERTY RIGHT (IPR)

Reference Books:

2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
Technical Writing and Presentation Skills (AHT-303)

Course Objectives: 28-Hours
- To develop effective writing and presentation skills in students.
- To develop textual, linguistic and presentation competencies in students appropriate for their professional careers.

Course Outcomes:
After the successful completion of course, the students will be able to:
CO1: Write clearly and fluently to produce effective technical documents.
CO2: Demonstrate an appropriate communication style to different types of audiences both orally and written as per demand of their professional careers.
CO3: Communicate in an ethically responsible manner.

Course Contents:

WRITING SKILLS

Unit-I (4 hours)
Technical Writing-Basic Principles: Words-Phrases-Sentences, Construction of Cohesive Paragraphs, Elements of Style.

Unit-II (4 hours)
Principles of Summarizing: Abstract, Summary, Synopsis

Unit-III (6 hours)
Technical Reports: Salient Features, Types of Reports, Structure of Reports, Data Collection, Use of Graphic Aids, Drafting and Writing

PRESENTATION SKILLS

Unit-IV (6 hours)

Unit-V (8 hours)

References: