UTTARAKHAND TECHNICAL UNIVERSITY, DEHRADUN

M TECH (Power System) Programme 2018

Course Scheduling for M.Tech.(Electrical Engineering), Specialization:Power Systems

Semester 1

Sr. No	Core/El ective	Code	Course name				Credits	
				L	Т	P		
1	Core 1	(MPST101)	Power System Analysis	3	0	0	3	
2	Core2	(MPST102)	Power System Dynamics-I	3	0	0	3	
3	PE1	(MPST111) (MPST112) (MPST113) (MPST114)	1.Renewabe Energy System 2.Smartgrids 3.High Power Converters 4.Wind and Solar Systems	3	0	0	3	
4	PE 2	(MPST121) (MPST122) (MPST123) (MPST124	1.Electrical Power Distribution System 2.Mathematical Methods for Power Engineering 3.Pulse Width Modulation for PE Converters 4.Electric and Hybrid Vehicles	3	0	0	3	
5		(MOET191)	Research Methodology and IPR	2	0	0	2	
6	Lab 1	(MPSP101)	Power System Steady State Analysis Lab	0	0	4	2	
7	Lab 2	(MPSP102) (MPSP111)	1.Power System Dynamics Lab 2.Renewable Energy Lab	0	0	4	2	
8	Audit -I	(MAUT191)	Audit I	2	0	0	0	
Total	Total Credits 18							

Semester 2

Sr. No	Core/El ective	Code	Course name				Credits
•						T _	
				L	T	P	
1	Core 3	(MPST201)	Digital Protection of Power	3	0	0	3
			System				
2	Core4	(MPST202)	Power System Dynamics-II	3	0	0	3
3	PE3	(MPST231)	1.Restructured Power Systems	3	0	0	3
		(MPST232)	2.Advanced Digital Signal				
			Processing				
		(MPST233)	3.Dynamics of Electrical				
			Machines				
		(MPST234)	4.Power Apparatus Design				
4	PE 4	(MPST241)	1.Advanced Micro-Controller	3	0	0	3
		(MPST242)	Based Systems				
		(MPST243)	2.SCADA System and				
		(MPST244)	Applications				
			3.Power Quality				
			4.AI Techniques				

5		(MPSP202)	Mini Project	0	0	4	2	
6	Lab 3	(MPSP201)	1.Power System Protection Lab	0	0	4	2	
		(MPSP243)	2.Power Quality Lab					
7	Lab 4	(MPSP244)	1.Artificial Intelligence Lab	0	0	4	2	
			2.Power Electronics					
		(MPSP245)	Applications to Power					
		() (DCD2 (C)	Systems Lab					
		(MPSP246)	3.Smart Grids Lab					
8	Audit -II	(MAUT922)	Audit II	2	0	0	0	
Tota	Total Credits 18							

Semester 3

Sr. No	Core/El ective	Code	Course name				Credits
				L	T	P	
1	PE5	(MPST351)	1.Power System Transients	3	0	0	3
		(MPST352)	2.FACTS and Custom Power				
			Devices				
		(MPST353)	3.Industrial Load Modelling and				
		(==== % ===)	Control				
		(MPST354)	4.Dynamics Of Linear Systems				
4	OE	(MOET391)	1. Business Analytics	3	0	0	3
		(MOET392)	2. Industrial Safety				
		(MOET393)	3. Operations Research				
		(MOET394)	4. Cost Management of				
		(MOET395)	Engineering Projects				
		(MOET396)	5. Composite Materials				
		` ′	6. Waste to Energy				
5	Major	(MPSP301)	Phase- I Dissertation	0	0	20	10
	Project						
Total	Credits 10	5					

Semester 4

Sr.	Core/El	Code	Course name				Credits
No	ective						
				L	T	P	
1	Major	(MPSP401)	Phase- II Dissertation	0	0	32	16
	Project						
Tota	Total Credits 16						

GRAND TOTAL CREDITS 68

Programme Outcomes of Power Systems Stream

PO1Ability to apply the enhanced knowledge in advanced technologies for modelling, analyzing and solving contemporary issues in power sector with a global perspective.

PO2Ability to critically analyze and carry out detailed investigation on multifaceted complexProblemsinarea of Power Systems and envisage advanced research in thrust areas.

PO3Ability to identify, analyze and solve real-life engineering problems in the area of PowerSystems and provide strategic solutions satisfying the safety, cultural, societal and environmental aspects/ needs.

PO4Ability for continued pursuance of research and to design, develop and proposetheoretical and practicalmethodologies towards research and development support for the Power System infrastructure.

PO5Ability to develop and utilize modern tools for modelling, analyzing and solving variousEngineeringproblems related to Power Systems.

PO6 Willingness and ability to work in a team of engineers/ researchers with mutualunderstandings to take unsophisticated challenges, in the field of Power Systems, leadand motivate the group to inculcatemultidisciplinary and collaborative approach.

PO7 Willingness and ability to take up administrative challenges including the management of various projects of interdisciplinary nature and carry out the same in an efficient manner giving due consideration to societal, environmental, economical and financial factors.

PO8 Ability to express ideas clearly and communicate orally as well as in writing with othersin aneffectivemanner, adhering to various national and international standards and practices for the documentation and presentation of the contents.

Audit course 1 & 2

- 1. English for Research Paper Writing
- 2. Disaster Management
- 3. Sanskrit for Technical Knowledge
- 4. Value Education
- 5. Constitution of India
- 6. Pedagogy Studies
- 7. Stress Management by Yoga
- 8. Personality Development through Life Enlightenment Skills.

1st Semester

Core-1: Power System Analysis (MPST101)

Course Objectives-

Students will be able to:

- 1.Study various methods of load flow and their advantages and disadvantages
- 2.Understand how to analyze various types of faults in power system

- 3.Understand power system security concepts and study the methods to rank the contingencies
- 4.Understand need of state estimation and study simple algorithms for state estimation
- 5. Study voltage instability phenomenon

Syllab	Syllabus				
Unit s	Contents	Hour s			
1	 Load flow :Overview of Newton-Raphson ,Gauss-Siedel fast decoupled methods, convergence properties, sparsity techniques, handling Q-max violations in constant matrix, inclusion in frequency effects AVR in load flow, handling of discrete variable in load flow. Security Analysis: Security state diagram, contingency analysis, generator shift distribution factors 	8			
2	 Fault Analysis: Simultaneous faults, open conductors faults, generalized method of fault analysis. 	8			
3	 security Analysis: Security state diagram, contingency analysis, generator shift distribution factor line outage distribution factor, multiple line outages, overload index ranking 	8			
4	 Power System Equivalents: WARD REI.equivalents 	6			
5	 State Estimation: Sources of errors in measurement Virtual and Pseudo, Measurement, Observability, Tracking state estimation, WSL method, bad data correction. 	6			
6	 Voltage Stability: Voltage collapse, P-V curve, multiple power flow solution, continuation power flow, optimal multiplies load flow, voltage collapse proximity indices. 	8			

- 1. J.J. Grainger &W.D.Stevenson, "Power system analysis", McGraw Hill ,2003
- 2. A. R. Bergen & Vijay Vittal, "Power System Analysis", Pearson, 2000
- 3. L.P. Singh, "Advanced Power System Analysis and Dynamics", New Age International,

2006

- 4. G.L. Kusic, "Computer aided power system analysis", Prentice Hall India, 1986
- 5. A.J. Wood, "Power generation, operation and control", John Wiley, 1994
- 6. P.M. Anderson, "Faulted power system analysis", IEEE Press, 1995

Course outcomes-

Students will be able to:

- 1. Able to calculate voltage phasors at all buses, given the data using various methods of load flow
- 2. Able to calculate fault currents in each phase
- 3. Rank various contingencies according to their severity
- 4. Estimate the bus voltage phasors given various quantities viz. power flow, voltages, taps, CB status etc
- 5. Estimate closeness to voltage collapse and calculate PV curves using continuation power flow

CORE-2: POWER SYSTEM DYNAMICS-I (MPST102)

Course Objectives: - Students will be able to:

- 1. Study of system dynamics and its physical interpretation
- 2. Development of mathematical models for synchronous machine
- 3. Modeling of induction motor

Syllabus				
Units	Content	Hours		
1	 Synchronous Machines: Per unit systems Park's Transformation (modified) Flux-linkage equations. 	8		
2	 Voltage and current equations Formulation of State-space equations Equivalent circuit. 	8		
3	 Sub-transient and transient inductance and Time constants, Simplified models of synchronous machines 	6		
4	Small signal model: Introduction to frequency model.	8		
	Excitation systems and Philips-Heffron modelPSS Load modeling.			
5		8		
6	Modeling of Induction MotorsPrime mover controllers.	6		

Suggested reading:-

- 1. P. M. Anderson & A. A. Fouad "Power System Control and Stability", Galgotia, New Delhi, 1981
- 2. J Machowski, J Bialek J. R W. Bumby, "Power System Dynamics and Stability", John Wiley & Sons, 1997

- 3. P.Kundur, "Power System Stability and Control", McGraw Hill Inc., 1994.
- 4. E.W. Kimbark, "Power system stability", Vol. I & III, John Wiley & Sons, New York 2002

Course Outcomes:

Students will be able to:

- 1. Understand the modeling of synchronous machine in details
- 2. Carry out simulation studies of power system dynamics using MATLAB-SIMULINK, MI POWER
- 3. Carry out stability analysis with and without power system stabilizer (PSS)
- 4. Understand the load modeling in power system

PE 1 :RENEWABLE ENERGY SYSTEM (MPST111)

Course Objectives:-Students will be able to:

- 1. To learn various renewable energy sources
- 2. To gain understanding of integrated operation of renewable energy sources
- 3. To understand Power Electronics Interface with the Grid

Syllabus				
Units	Content	Hours		
1	Introduction, Distributed vs Central Station Generation	8		
	Sources of Energy such as Micro-turbines			
	Internal Combustion Engines.			
2	Introduction to Solar Energy, Wind Energy, Combined Heat and Power	8		
	Hydro Energy, Tidal Energy, Wave Energy			
	Geothermal Energy, Biomass and Fuel Cells.			
3	Power Electronic Interface with the Grid	6		
4	Impact of Distributed Generation on the Power System	8		
	Power Quality Disturbances			
5	Transmission System Operation	8		
	Protection of Distributed Generators			
6	Economics of Distributed Generation	6		
ı	Case Studies			

Suggested reading

- 1.RanjanRakesh, Kothari D.P, Singal K.C, "Renewable Energy Sources and Emerging Technologies",2nd Ed. Prentice Hall of India,2011
- 2.MathH.Bollen, Fainan Hassan, "Integration of Distributed Generation in the Power System", July 2011, Wiley IEEE Press
- 3.Loi Lei Lai, Tze Fun Chan, "Distributed Generation: Induction and Permanent Magnet Generators", October 2007, Wiley-IEEE Press.
- 4.RogerA.Messenger, Jerry Ventre, "Photovoltaic System Engineering", 3rd Ed, 2010
- 5.JamesF.Manwell, Jon G.McGowan, Anthony L Rogers, "Wind energy explained: Theory Design and Application", John Wiley and Sons 2nd Ed, 2010

Course Outcomes:-Students will be able to:

- 1. Knowledge about renewable energy
- 2. Understand the working of distributed generation system in autonomous/grid connected modes
- 3. Know the Impact of Distributed Generation on Power System

PE 1: SMART GRIDS (MPST112)

- Course Objectives:-Students will be able to:
 4. Understand concept of smart grid and its advantages over conventional grid
- 5. Know smart metering techniques
- 6. Learn wide area measurement techniques
- Understanding the problems associated with integration of distributed generation & its solution through smart grid.

			_	
C -	-11	_ `	1_	
•	7 H H	•	n	HC
\mathbf{v}		а	v	us

Units	Content	Hours
1	Introduction to Smart Grid, Evolution of Electric Grid	8
	Concept of Smart Grid, Definitions	
	Need of Smart Grid, Concept of Robust &Self Healing Grid Present	
	development & International policies in Smart Grid	
2	Introduction to Smart Meters, Real Time Prizing, Smart Appliances,	8
	Automatic Meter Reading(AMR)	
	Outage Management System(OMS)	
	Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart	
	Sensors, Home & Building Automation	
	Smart Substations, Substation Automation, Feeder Automation.	
3	Geographic Information System(GIS)	8
	Intelligent Electronic Devices(IED) & their application for monitoring	
	& protection, Smart storage like Battery, SMES, Pumped Hydro,	
	Compressed Air Energy Storage, Wide Area Measurement	
	System(WAMS)	
	Phase Measurement Unit(PMU)	
4	Concept of micro-grid, need & applications of micro-grid, formation	8
	of micro-grid, Issues of interconnection, protection & control of	
	micro-grid.	
	Plastic & Organic solar cells, Thin film solar cells, Variable speed	
	wind generators, fuel-cells, micro-turbines	
	Captive power plants, Integration of renewable energy sources	
5	Power Quality & EMC in Smart Grid, Power Quality issues of Grid	6
	connected Renewable Energy Sources	
	Power Quality Conditioners for Smart Grid, Web based Power	
	Quality monitoring	
	Power Quality Audit	
6	Advanced Metering Infrastructure (AMI), Home Area Network	6

(HAN), Neighborhood Area

Network (NAN), Wide Area Network (WAN)

Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication,

Wireless Mesh Network, Basics of CLOUD Computing & Cyber

Security for Smart Grid

Broadband over Power line (BPL)

IP based protocols

Suggested reading

- 1. AliKeyhani, "Design of smart power grid renewable energy systems", Wiley IEEE, 2011
- 2.Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press , 2009
- 3.JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, "Smart Grid: Technology and Applications", Wiley 2012
- 4. StuartBorlase, "Smart Grid: Infrastructure, Technology and solutions" CRC Press
- 5.A.G.Phadke, "Synchronized Phasor Measurement and their Applications", Springer

Course Outcomes

Students will be able to:

- 1. Appreciate the difference between smart grid & conventional grid
- 2. Apply smart metering concepts to industrial and commercial installations
- 3. Formulate solutions in the areas of smart substations, distributed generation and wide area measurements
- 4. Come up with smart grid solutions using modern communication technologies

PE 1: HIGH POWER CONVERTERS (MPST113)

Course Objectives:-Students will be able to:

- 1. Understand the requirements of high power rated converters
- 2. Understand the different topologies involved for these converters
- 3. Able to understand the design of protection circuits for these converters

Syllabus

Units	Content	Hours
1	Power electronic systems	6
	An overview of PSDs, multipulse diode rectifier, multipulse	
	SCR rectifier.	
2	Phase shifting transformers, multilevel voltage source inverters: two	8
	level voltage source inverter,	
	Cascaded	
	H bridge multilevel inverter.	
3	Diode clamped multilevel inverters, flying capacitor multilevel inverter	6
4	PWM current source inverters,	6
	DC to DC switch mode converters	
5	AC voltage controllers: Cyclo-converters, matrix converter,	8
	Power conditioners and UPS.	
6	Design aspects of converters, protection of devices and circuits	6

Suggested reading

- 1. N. Mohan, T. M. Undeland and W. P. Robbins, "Power Electronics: Converter, Applications and Design", John Wiley and Sons, 1989
- 2. M.H. Rashid, "Power Electronics", Prentice Hall of India, 1994
- 3. B. K. Bose, "Power Electronics and A.C. Drives", Prentice Hall, 1986
- 4. Bin Wu, "High power converters and drives", IEEE press, Wiley Enter science

Course Outcomes:-

Students will be able to:

- 1. Learn the characteristics of PSDs such as SCRs, GTOs, IGBTs and use them in practical systems
- 2. Knowledge of working of multi-level VSIs, DC-DC switched mode converters, cyclo-converters and PWM techniques and the ability to use them properly
- 3. Acquire knowledge of power conditioners and their applications
- 4. Ability to design power circuit and protection circuit of PSDs and converters

PE 1: WIND AND SOLAR SYSTEMS (MPST114)

Course Objectives:-Students will be able to:

- 1. To get exposure to wind and solar systems
- 2. To understand the factors involved in installation and commissioning of a Solar or Wind plant.
- 3. Learning the dynamics involved when interconnected with power system grid

Syllabus

Units	Content	Hours
1	Historical development and current status	8
	characteristics of wind power generation	
	network integration issues	
2	Generators and power electronics for wind turbines,	8
	power quality standards for wind turbines,	
	Technical regulations for interconnections of wind farm with power	
	systems.	
3	Isolated wind systems,	8
	reactive power and voltage control,	
	economic aspects.	
4	Impacts on power system dynamics,	8
	power system interconnection	
5	Introduction of solar systems,	6
	merits and demerits, concentrators, various applications.	
6	Solar thermal power generation,	6
	PV power generation,	
	Energy Storage device.	
	Designing the solarsystem for small installations.	

Suggested reading

- 1. Thomas Ackermann, Editor, "Wind power in Power Systems", John Willy and sons ltd.2005
- 2. Siegfried Heier, "Grid integration of wind energy conversion systems", John Willy and sons ltd., 2006
- 3. K. Sukhatme and S.P. Sukhatme, "Solar Energy". Tata MacGraw Hill, Second Edition, 1996

Course Outcomes:-

Students will be able to:

- 1. Appreciate the importance of energy growth of the power generation from the renewable energy sources and participate in solving these problems
- 2. Demonstrate the knowledge of the physics of wind power and solar power generation and all associated issues so as to solve practical problems
- 3. Demonstrate the knowledge of physics of solar power generation and the associated issues
- 4. Identify, formulate and solve the problems of energy crises using wind and solar energy

PE 2: ELECTRIC POWER DISTRIBUTION SYSTEM(MPST121)

- 1. Learning about power distribution system
- 2. Learning of SCADA System
- 3. Understanding Distribution Automation

Jnits	Content	Hours
1	Distribution of Power, Management, Power Loads,	8
	Load Forecasting Short-term & Long-term,	
	Power System Loading, Technological Forecasting.	
2	Advantages of Distribution Management System (D.M.S.)	8
	Distribution Automation: Definition,	
	Restoration / Reconfiguration of Distribution Network, Different	
	Methods and Constraints	
	Power Factor Correction	
3	Interconnection of Distribution,	8
	Control & Communication Systems,	
	Remote Metering,	
	Automatic Meter Reading and its implementation	
4	SCADA: Introduction, Block Diagram,	8
	SCADA Applied To Distribution Automation.	
	Common Functions of SCADA,	
	Advantages of Distribution Automation through SCADA	
5	Calculation of Optimum Number of Switches, Capacitors, Optimum	6
	Switching Device Placement in Radial,	
	Distribution Systems, Sectionalizing Switches – Types, Benefits,	
	Bellman's Optimality Principle,	
	Remote Terminal Units,	
	Energy efficiency in electrical distribution & Monitoring	
6	Maintenance of Automated Distribution Systems	6
	Page	
	11	

Difficulties in Implementing Distribution.
Automation in Actual Practice, Urban/Rural Distribution, Energy
Management AI techniques applied to Distribution Automation

- 1. A.S. Pabla, "Electric Power Distribution", Tata McGraw Hill Publishing Co. Ltd., Fourth Edition.
- 2. 2.M.K. Khedkar, G.M. Dhole, "A Text Book of Electrical power Distribution Automation", University Science Press, New Delhi
- 3. Anthony J Panseni, "Electrical Distribution Engineering", CRC Press
- 4. James Momoh, "Electric Power Distribution, automation, protection & control", CRC Press

Course Outcomes :-Students will be able to:

- 1. Knowledge of power distribution system
- 2. Study of Distribution automation and its application in practice
- 3. To learn SCADA system

PE 2: MATHEMATICAL METHODS FOR POWER ENGINEERING(MPST122)

Course Objectives: -Students will be able to:

- 1. To understand the relevance of mathematical methods to solve engineering problems.
- 2. To understand how to apply these methods for a given engineering problem.

Syllabus

Units	Content	Hours
1	Vector spaces,	6
	Linear transformations	
	Matrix representation of linear transformation	
2	Eigen values and Eigen vectors of linear operator	6
3	Linear Programming Problems	8
	Simplex Method	
	Duality	
	Non Linear Programming problems	
4	Unconstrained Problems	8
	Search methods	
	Constrained Problems	
5	Lagrange method	8
	Kuhn-Tucker conditions	
	Random Variables	
	Distributions	
6	Independent Random Variables	8
	Marginal and Conditional distributions	
	Elements of stochastic processes	

Suggested reading

- 1. Kenneth Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, PHI, 1992
- 2. Erwin Kreyszig, "Introductory Functional Analysis with Applications", John Wiley & Sons, 2004
- 3. Irwin Miller and Marylees Miller, John E. Freund's "Mathematical Statistics", 6th Edn, PHI,

2002

- 4. J. Medhi, "Stochastic Processes", New Age International, New Delhi., 1994
- 5. A Papoulis, "Probability, Random Variables and Stochastic Processes", 3rd Edition, McGraw Hill, 2002
- 6. John B Thomas, "An Introduction to Applied Probability and Random Processes", John Wiley, 2000
- 7. Hillier F S and Liebermann G J, "Introduction to Operations Research", 7th Edition, McGraw Hill, 2001
- 8. Simmons D M, "Non Linear Programming for Operations Research", PHI, 1975

Course Outcomes: -

Students will be able to:

- 1. Knowledge about vector spaces, linear transformation, eigenvalues and eigenvectors of linear operators
- 2. To learn about linear programming problems and understanding the simplex method for solving linear programming problems in various fields of science and technology
- 3. Acquire knowledge about nonlinear programming and various techniques used for solving constrained and unconstrained nonlinear programming problems
- 4. Understanding the concept of random variables, functions of random variable and their probability distribution
- 5. Understand stochastic processes and their classification

PE 2: PULSE WIDTH MODULATION FOR PE CONVERTERS (MPST123)

Course Objectives:-Students will be able to:

- 1. To understand Necessity and Importance of PWM techniques
- 2. Implementation of PWM controllers

Syllabus

Units	Content	Hours
	Introduction to PE converters	8
	Modulation of one inverter phase leg	
	Modulation of single phase	
1	VSI and 3 phase VSI	
2	Zero space vector placement modulation strategies	8
	Losses-Discontinuous modulation	
	Modulation of CSI	
3	Over modulation of converters	8
	programme modulation strategies	
4	Pulse width modulation for multilevel inverters	8
	Implementation of modulation controller	
5	Continuing developments in modulation as random PWM	6
	PWM for voltage unbalance	
6	Effect of minimum pulse width and dead time	6

Suggested reading

- 1. D. Grahame Holmes, Thomas A. Lipo, "Pulse width modulation of Power Converter: Principles and Practice", John Wiley & Sons, 03-Oct-2003
- 2. Bin Vew, "High Power Converter", Wiley Publication
- 3. Marian K. Kazimicrczuk, "Pulse width modulated dc-dc power converter", Wiley

Publication

Course Outcomes:-Students will be able to:

- 1. Appreciate importance of PWM techniques
- 2.Implement PWM using different strategies
- 3. Control CSI and VSI using PWM
- 4. Compare performance of converter for different PWM techniques

PE 2: ELECTRIC AND HYBRID VECHILES (MPST124)

- 1. To understand upcoming technology of hybrid system
- 2. To understand different aspects of drives application
- 3. Learning the electric Traction

Syllabus		
Units	Content Hours	
1	History of hybrid and electric vehicles, 8	
	Social and environmental importance of hybrid and electric vehicles	
	Impact of modern drive-trains on energy supplies	
	Basics of vehicle performance, vehicle power source	
	characterizationTransmission characteristics	
	Mathematical models to describe vehicle performance	
2	Basic concept of hybrid traction, 8	
	Introduction to various hybrid drive-train topologies	
	Power flow control in hybrid drive-train topologies	
	Fuel efficiency analysis.	
3	Basic concept of hybrid traction, 8	
	Introduction to various hybrid drive-train topologies	
	Power flow control in hybrid drive-train topologies	
	Fuel efficiency analysis.	
4	Introduction to electric components used in hybrid and electric	8
	Vehicles	
	Configuration and control of DC Motor drives	

	Configuration and control of Introduction Motor drives configuration and control of Permanent Magnet Motor drive Configuration and control of Switch Reluctance Motor drives, drive system efficiency	s
5	Matching the electric machine and the internal combustion engine (ICE) Sizing the propulsion motor, sizing the power electronics Selecting the energy storage technology Communications, supporting subsystems	8
6	Introduction to energy management and their strategies used in hybrid and electric vehicle Classification of different energy management strategies Comparison of different energy management strategies Implementation issues of energy strategies	6

- 1. Sira -Ramirez, R. Silva Ortigoza, "Control Design Techniques in Power Electronics Devices", Springer.
- 2. Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, "Sliding mode control of switching Power Converters"

Course Outcomes:-

Students will be able to:

- 1. Acquire knowledge about fundamental concepts, principles, analysis and design of hybrid and electric vehicles.
- 2. To learn electric drive in vehicles / traction.

LAB 1- POWER SYSTEM STEADY STATE ANALYSIS LAB (MPSP101)

S.No	Experiments	Hours
1	Power Systems & Power Electronics Lab	2
2	Computer Simulation Lab	2
3	Simulation of IGBT Inverters.	2
4	Simulation of Thyristor Converters.	2
5	Transient Stability Studies.	2
6	Short Circuit Studies.	2
7	Load Flow Studies	2
8	Load Forecasting and Unit Commitment	2

LAB2- POWER SYSTEM DYNAMICS LAB/RENEWABLE ENERGY LAB (MPSP101/MPSP102)

List of experiments:

S.No	Experiments	Hours
1	Power Curves	2
2	Build a Wind Farm	2
3	Test the Capabilities of the Hydrogen Fuel Cells and Capacitors	2
4	Effect of Temperature on Solar Panel Output	2
5	Variables Affecting Solar Panel Output	2
6	Effect of Load on Solar Panel Output	2
7	Wind Turbine Output: The Effect of Load	2
8	Test the Capabilities of Solar Panels and Wind Turbines	2

Research Methodology and IPR (MOET191)	
Teaching Scheme	
Lectures: 1hrs/week	

Course Outcomes:

At the end of this course, students will be able to

- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Syllabus Contents:

Unit 1: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2: Effective literature studies approaches,

analysisPlagiarism, Research ethics,

Unit 3: Effective technical writing, how to write report, Paper

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit 4: Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants

of patents, Patenting under PCT.

Unit 5: Patent Rights: Scope of Patent Rights. Licensing and transfer of technology.Patentinformation and databases.Geographical Indications.

Unit 6: New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

- Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- Mayall, "Industrial Design", McGraw Hill, 1992.
- Niebel, "Product Design", McGraw Hill, 1974.
- Asimov, "Introduction to Design", Prentice Hall, 1962.
- Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

SECOND SEMESTER

CORE - 3 : DIGITAL PROTECTION OF POWER SYSTEM (MPST201)

- 1. Study of numerical relays
- 2. Developing mathematical approach towards protection
- 3. Study of algorithms for numerical protection

Units	Content	Hours
1	Evolution of digital relays from electromechanical relays	6
	Performance and operational characteristics of digital protection	
2	Mathematical background to protection algorithms	6
	Finite difference techniques	
3	Interpolation formulae	8
	Forward, backward and central difference interpolation	
	Numerical differentiation	
	Curve fitting and smoothing	
	Least squares method	
	Fourier analysis	
	Fourier series and Fourier transform	
	Walsh function analysis	
4	Basic elements of digital protection	8
	Signal conditioning: transducers, surge protection, analog filtering,	
	analog multiplexers	
	Conversion subsystem: the sampling theorem, signal aliasing	

	Error, sample and hold circuits, multiplexers, analog to digital conversion	
	Digital filtering concepts,	
	The digital relay as a unit consisting of hardware and software	
5	Sinusoidal wave based algorithms	8
	Sample and first derivative (Mann and Morrison) algorithm.	
	Fourier and Walsh based algorithms	
6	Fourier Algorithm: Full cycle window algorithm, fractional cycle	8
	window algorithm.	
	Walsh function based algorithm.	
	Least Squares based algorithms. Differential equation based algorithms.	
	Traveling Wave based Techniques.	
	Digital Differential Protection of Transformers.	
	Digital Line Differential Protection.	
	Recent Advances in Digital Protection of Power Systems.	

- 1. A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press, 2009
- 2. A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999
- 3. Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006
- 4. S.R.Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd.2014

Course Outcomes:-

Students will be able to:

- 1. Learn the importance of Digital Relays
- 2. Apply Mathematical approach towards protection
- 3. Learn to develop various Protection algorithms


CORE - 4:POWER SYSTEM DYNAMICS-II (MPST202)

Course Objectives:-Students will be able to:

- 1. Study of power system dynamics
- 2. Interpretation of power system dynamic phenomena
- 3. Study of various forms of stability

Syllabus

Units	Content	Hours
1	Basic Concepts of Dynamic Systems and Stability Definition	8
	Small Signal Stability (Low Frequency Oscillations) of Unregulated and	
	Regulated System	
2	Effect of Damper, Flux Linkage Variation and AVR	8
3	Large Signal Rotor Angle Stability	8
	Dynamic Equivalents And Coherency	
	Direct Method of Stability Assessment	
	Stability Enhancing Techniques	
	Mitigation Using Power System Stabilizer	
4	Asynchronous Operation and Resynchronization	6
	Multi-Machine Stability	
5	Dynamic Analysis of Voltage Stability	6

	Voltage Collapse	
6	Frequency Stability	8
	Automatic Generation Control	
	Primary and Secondary Control	
	Sub-Synchronous Resonance and Counter Measures	

- 1. P. Kundur, "Power System Stability and Control", McGraw Hill Inc, 1994
- 2. J. Machowski, Bialek, Bumby, "Power System Dynamics and Stability", John Wiley & Sons, 1997
- 3. L. Leonard Grigsby (Ed.); "Power System Stability and Control", Second edition, CRC Press, 2007
- 4. V. Ajjarapu, "Computational Techniques for voltage stability assessment & control"; Springer, 2006

Course Outcomes:-

Students will be able to:

- 1. Gain valuable insights into the phenomena of power system including obscure ones.
- 2. Understand the power system stability problem.
- 3. Analyze the stability problems and implement modern control strategies.
- 4. Simulate small signal and large signal stability problems.

PE 3: RESTRUCTURED POWER SYSTEMS (MPST231)

- 1. Understand what is meant by restructuring of the electricity market
- 2. Understand the need behind requirement for deregulation of the electricity market
- 3. Understand the money, power & information flow in a deregulated power system

Units	Content	Hours
1	Fundamentals of restructured system	8
	Market architecture	
	Load elasticity	
	Social welfare maximization	
2	OPF: Role in vertically integrated systems and in restructured markets	8
	congestion management	
3	Optimal bidding	8
	Risk assessment	
	Hedging	
	Transmission pricing	
	Tracing of power	
4	Ancillary services 8	
	Standard market design	
	Distributed generation in restructured markets	
5	Developments in India 6	
	IT applications in restructured markets	
6	Working of restructured power systems 6	
PJM, Re	cent trends in Restructuring	

- 1. LorrinPhilipson, H. Lee Willis, "Understanding electric utilities and deregulation", Marcel Dekker Pub., 1998.
- 2. Steven Stoft, "Power system economics: designing markets for electricity", John Wiley and Sons, 2002.
- 3. Kankar Bhattacharya, Jaap E. Daadler, Math H.J. Boolen, "Operation of restructured power systems", Kluwer Academic Pub., 2001.
- 4. Mohammad Shahidehpour, MuwaffaqAlomoush, "Restructured electrical power systems: operation, trading and volatility", Marcel Dekker.

Course Outcomes: -Students will be able to:

- 1. Describe various types of regulations in power systems.
- 2. Identify the need of regulation and deregulation.
- 3. Define and describe the Technical and Non-technical issues in Deregulated Power Industry.
- 4. Identify and give examples of existing electricity markets.
- 5. Classify different market mechanisms and summarize the role of various entities in the market.

PE 3:ADVANCED DIGITAL SIGNAL PROCESSING (MPST232)

- 1. To understand the difference between discrete-time and continuous-time signals
- 2. To understand and apply Discrete Fourier Transforms (DFT)

Units	Content	Hours
1	Discrete time signals	8
	Linear shift invariant systems-	
	Stability and causality	
	Sampling of continuous time signals-	
	Discrete time Fourier transform- Discrete Fourier series- Discrete Fourier Transform	
	Z transform-Properties of different transforms	
2	Linear convolution using DFT	8
	Computation of DFT Design of IIR digital filters from analog filters	
	Impulse invariance method	
	Bilinear transformation method	
3	FIR filter design using window functions	8
	Comparison of IIR and FIR digital filters	
	Basic IIR and FIR filter realization structures	
	Signal flow graph representations Quantization process and errors	
	Coefficient quantisation effects in IIR and FIR filters	
	A/D conversion noise- Arithmetic round-off errors	8
4	Dynamic range scaling	
Overflo	w oscillations and zeroInput limit cycles in IIR filters	
Linear	Signal Models	
5	All pole, All zero and Pole-zero models	6
	Power spectrum estimation- Spectral analysis of deterministic signals.	
	Estimation of power spectrum of stationary random signals	
5	Optimum linear filters	6
	Optimum signal estimation	
	Mean square error estimation	
	Optimum FIR and IIR Filters	•

- 1. Sanjit K Mitra, "Digital Signal Processing: A computer-based approach ",TataMc Grow-Hill Edition1998
- 2. Dimitris G .Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Signal Processing", Mc Grow Hill international editions. -2000

Course Outcomes:-

Students will be able to:

- 1. Knowledge about the time domain and frequency domain representations as well analysis of discrete time signals and systems
- 2. Study the design techniques for IIR and FIR filters and their realization structures.
- 3. Acquire knowledge about the finite word length effects in implementation of digital filters.
- 4. Knowledge about the various linear signal models and estimation of power spectrum of stationary random signals
- 5. Design of optimum FIR and IIR filters

PE 3: DYNAMICS OF ELECTRICAL MACHINES (MPST233)

- 1. Learn Performance characteristics of machine
- 2. To understand the dynamics of the machine
- 3. To understand how to determine stability of machine
- 4. Learn the synchronous machine

SvI	la	hue

Units	Content	Hours
1	Stability, Primitive 4 Winding Commutator Machine	8
	Commutator Primitive Machine	
	Complete Voltage Equation of Primitive 4 Winding Commutator Machine	
2	Torque EquationAnalysis of Simple DC Machines using the Primitive Machine Equations	8
	The Three Phase Induction Motor.	
	Transformed Equations	
	Different Reference Frames for Induction Motor Analysis Transfer	
	Function Formulation	
3	Three Phase Salient Pole Synchronous Machine	8
	Parks Transformation, Steady State Analysis	
4	Large Signal Transient	8
	Small Oscillation Equations in State Variable form	
	Dynamical Analysis of Interconnected Machines	
5	Large Signal Transient Analysis using Transformed Equations 6	
	DC Generator /DC Motor System	
6	Alternator /Synchronous Motor System 6	

- 1. D.P. Sengupta& J.B. Lynn," Electrical Machine Dynamics", The Macmillan Press Ltd. 1980
- 2. R Krishnan "Electric Motor Drives, Modeling, Analysis, and Control", Pearson Education., 2001
- 3. P.C. Kraus, "Analysis of Electrical Machines", McGraw Hill Book Company, 1987
- 4. I. Boldia& S.A. Nasar,,"Electrical Machine Dynamics", The Macmillan Press Ltd. 1992
- 5. C.V. Jones, "The Unified Theory of Electrical Machines", Butterworth, London. 1967

Course Outcomes: -

Students will be able to:

- 1. Formulation of electrodynamic equations of all electric machines and analyze the performance characteristics
- 2. Knowledge of transformations for the dynamic analysis of machines
- 3. Knowledge of determination of stability of the machines under small signal and transient conditions
- 4. Study about synchronous machine

PE 3: POWER APPARTUS DESIGN (MPST234)

Course Objectives: -Students will be able to:

- 1. Study the modelling analysis of rotating machine.
- 2. Learning electromagnetic energy conversion
- 3. To know about rating of machines.

SYLLABUS

Units	Content	Hours
	Principles of Design of Machines -Specific loadings, choice of magnetic and electric loadings	8
	Real and apparent flux densities, temperature rise calculation, Separation of main dimension for DC machines	
	Induction machines and synchronous machines	
	Design of Transformers-General considerations, output equation, emf per turn, choice of flux density and current density, main dimensions, leakage reactance and conductor size, design of tank and cooling	
2	Specific loadings, choice of magnetic and electric loadings Real and apparent flux -densities, temperature rise calculation	8
	Separation of main dimension for DC machines	
	Induction machines and synchronous machines	
	Heating and cooling of machines, types of ventilation, continuous and intermittent rating	
3	General considerations, output equation, emf per turn, choice of flux density and current density, main dimensions, leakage reactance and conductor size, design of tank and cooling tubes	8
	Calculation of losses, efficiency and regulation	
	Forces winding during short circuit	
4	General considerations, output equation	8
	Choice of specific electric and magnetic loadings, efficiency, power factor	
	Page	
	23	

Number of slots in stator and rotor Elimination of harmonic torques

Design of stator and rotor winding, slot leakage flux

Leakage reactance, equivalent resistance of squirrel cage rotor,

Magnetizing current, efficiency from design data

6	Types of alternators, comparison, specific loadings, output co-efficient,	6
	design of main dimensions	
	Introduction to Computer Aided Electrical Machine Design Energy	
	efficient machines	

- 1. Clayton A.E, "The Performance and Design of D.C. Machines", Sir I. Pitman & sons, Ltd.
- 2. M.G. Say, "The Performance and Design of A.C. Machines", Pitman
- 3. Sawhney A.K, "A course in Electrical Machine Design", DhanpatRai& Sons, 5th Edition

Course Outcomes: -

Students will be able to:

- 1. To give a systematic approach for modeling and analysis of all rotating machines under both transient and steady state conditions with the dimensions and material used
- 2. Ability to model and design all types of rotation machines including special machines

PE4 : ADVANCED MICRO-CONTROLLER BASED SYSTEMS (MPST241)

- 1. To understand the architecture of advance microcontrollers
- 2. To understand the applications of these controllers
- 3. To get some introduction to FPGA

Syllabu	S	
Units	Content	
1	Basic Computer Organization with examples of 8086, 80X86, 8051 etc	Hours
	Accumulator based Processes-Architecture	
	Memory Organization-I/O Organization	8
2	Micro-Controllers-Intel 8051,	
	Intel 8056- Registers, Memories	
	I/O Ports, Serial Communication	8
	Timers, Interrupts, Programming	
3	Intel 8051 – Assembly language programming	
	Addressing-Operations	
	Stack & Subroutines	8
	Interrupts-DMA	
4	PIC 16F877- Architecture Programming	
	Interfacing Memory/ I/O Devices	
	Serial I/O and data communication	8
	Digital Signal Processor (DSP)	
	Architecture – Programming	
5	Introduction to FPGA	6
6	Microcontroller development for motor control applications	
	Stepper motor control using micro controller	
	1	<u> </u>

- 1. John.F.Wakerly: "Microcomputer Architecture and Programming", John Wiley and Sons
- 2. Ramesh S.Gaonker: "Microprocessor Architecture, Programming and Applications with the 8085", Penram International Publishing (India), 1994
- 3. Raj Kamal: "The Concepts and Features of Microcontrollers", Wheeler Publishing, 2005
- 4. Kenneth J. Ayala, "The 8051 microcontroller", Cengage Learning, 2004
- 5. John Morton," The PIC microcontroller: your personal introductory course", Elsevier, 2005
- 6. Dogan Ibrahim," Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18FSeries", Elsevier, 2008
- 7. Microchip datasheets for PIC16F877

Course Outcomes: -

Students will be able to:

- 1. To learn how to program a processor in assembly language and develop an advanced processorbased system
- 2. To learn configuring and using different peripherals in a digital system
- 3. To compile and debug a Program
- 4. To generate an executable file and use it

PE 4: SCADA SYSTEM AND APPLICATIONS (MPST242)

- 1. To understand what is meant by SCADA and its functions
- 2. To know SCADA communication
- 3. To get an insight into its application

C-11-1-			
Syllabus			
Units	Content	Hours	
	Introduction to SCADA	8	
	Data acquisition systems		
	Evolution of SCADA		
	Communication technologies		
2	Monitoring and supervisory functions	6	
	SCADA applications in Utility Automation		
	Industries SCADA		
3	Industries SCADA System Components	8	
`	Schemes- Remote Terminal Unit (RTU)		
	Intelligent Electronic Devices(IED)		
	Programmable Logic Controller (PLC)		
	Communication Network, SCADA Server, SCAl	DA/HMI Systems	
4	SCADA Architecture	8	
	Various SCADA architectures, advantages and	disadvantages of each	
	System	_	
9	ingle unified standard architecture -IEC 61850.		
5	SCADA Communication	8	
	various industrial communication technologies		
	wired and wireless methods and fiber optics		
	Open standard communication protocols		
6	SCADA Applications: Utility applications		6
_	Transmission and Distribution sector operations, monitor	oring, analysis and	
	Improvement	•	
	Page		

Industries - oil, gas and water

- 1. Stuart A. Boyer: "SCADA-Supervisory Control and Data Acquisition", Instrument Society of AmericaPublications, USA, 2004
- 2. Gordon Clarke, Deon Reynders: "Practical Modern SCADA Protocols: DNP3, 60870.5 and RelatedSystems", Newnes Publications, Oxford, UK,2004
- 3. William T. Shaw, "Cybersecurity for SCADA systems", PennWell Books, 2006
- 4. David Bailey, Edwin Wright, "Practical SCADA for industry", Newnes, 2003
- 5. Michael Wiebe, "A guide to utility automation: AMR, SCADA, and IT systems for electric power", PennWell 1999

Course Outcomes:-

Students will be able to:

- 1. Describe the basic tasks of Supervisory Control Systems (SCADA) as well as their typical applications
- 2. Acquire knowledge about SCADA architecture, various advantages and disadvantages of each system
- 3. Knowledge about single unified standard architecture IEC 61850
- 4. To learn about SCADA system components: remote terminal units, PLCs, intelligent electronic devices, HMI systems, SCADA server
- 5. Learn and understand about SCADA applications in transmission and distribution sector, industries etc

PE 4: POWER QUALITY (MPST243)

- 8. Understand the different power quality issues to be addressed
- 9. Understand the recommended practices by various standard bodies like IEEE,IEC, etc on voltage& frequency, harmonics
- 10. Understanding STATIC VAR Compensators

Units	Content	Hours
1	Introduction-power quality-voltage quality-overview of power quality phenomena classification of power quality issues-power quality measures and standards-THD-TIF-DIN-C message weights-flicker factor transient phenomena-occurrence of power quality problems power acceptability curves-IEEE guides, standards and recommended practices.	8
	Harmonics-individual and total harmonic distortion RMS value of a harmonic waveform- Triplex harmonics-important harmonic introducing devices-SMPS- Three phase power converters- arcing devices saturable devices-harmonic distortion of fluorescent lamps-effect of power system harmonics on power system equipment and loads.	8
3	Modeling of networks and components under non-sinusoidal	8

	conditions transmission and distribution systems	
	Shunt capacitors-transformers-electric machines-ground	
	systems loads that cause power quality problems	
	power quality problems created by drives and its impact on drive	
4	Power factor improvement- Passive Compensation	8
	Passive Filtering, Harmonic	
	Resonance	
	Impedance Scan Analysis- Active Power Factor Corrected Single	
	Phase Front End,	
	Control Methods for Single Phase APFC	
	Three Phase APFC and Control Techniques, PFC	
	Based on Bilateral Single Phase and Three Phase Converter	
5	Static VAR compensators-SVC and STATCOM Active Harmonic	8
	Filtering-Shunt Injection	
	Filter for single phase, three-phase three-wire and three-phase four-	
	wire systems	
	d-q domain control of three phase shunt active filters uninterruptible	
	power supplies constant voltage	
	Transformers	
	series active power filtering techniques for harmonic cancellation and	
	isolation.	
6	Dynamic Voltage Restorers for sag, swell and flicker problems.	8
	Grounding and wiring introduction	
	NEC grounding requirements-reasons for grounding	
	typical grounding and wiring problems solutions to grounding and	
	wiring problems	

- 1. G.T. Heydt, "Electric power quality", McGraw-Hill Professional, 2007
- 2. Math H. Bollen, "Understanding Power Quality Problems", IEEE Press, 2000
- 3. J. Arrillaga, "Power System Quality Assessment", John wiley, 2000
- 4. J. Arrillaga, B.C. Smith, N.R. Watson & A. R.Wood ,"Power system Harmonic Analysis", Wiley, 1997

Course Outcomes: -

Students will be able to:

- 1. Acquire knowledge about the harmonics, harmonic introducing devices and effect of harmonics on system equipment and loads
- 2. To develop analytical modeling skills needed for modeling and analysis of harmonics in networks and components
- 3. To introduce the student to active power factor correction based on static VAR compensators and its control techniques
- 4. To introduce the student to series and shunt active power filtering techniques for harmonics.

PE 4 – ARTIFICIAL INTELLIGENCE TECHNIQUES (MPST244)

Course Objectives:-Students will be able to:

- 1. Understanding fuzzy logic, ANN
- 2. Understanding GA & EP

Syllabus		
Units	Content	Hours
1	Biological foundations to intelligent Systems	8
	Artificial Neural Networks, Single layer and Multilayer Feed Forward NN	
	LMS and Back Propagation Algorithm	
	Feedback networks and Radial Basis Function Networks	
2	Fuzzy Logic	8
	Knowledge Representation and Inference Mechanism	
	Defuzzification Methods	
3	Fuzzy Neural Networks	8
	some algorithms to learn the parameters of the network like GA	
4	System Identification using Fuzzy and Neural Network	6
5	Genetic algorithm	8
	Reproduction cross over, mutation	
	Introduction to evolutionary program	
6	Applications of above mentioned techniques to practical problems	6

Suggested reading

- 1. J M Zurada, "An Introduction to ANN", Jaico Publishing House
- 2. Simon Haykins, "Neural Networks", Prentice Hall
- 3. Timothy Ross, "Fuzzy Logic with Engg. Applications", McGraw. Hill
- 4. Driankov, Dimitra, "An Introduction to Fuzzy Control", Narosa Publication
- 5. Golding, "Genetic Algorithms", Addison-Wesley Publishing Com

Course Outcomes: -

Students will be able to:

- 1. Learn the concepts of biological foundations of artificial neural networks
- 2. Learn Feedback networks and radial basis function networks and fuzzy logics
- 3. Identifications of fuzzy and neural network
- 4. Acquire the knowledge of GA

LAB 3-POWER SYSTEM PROTECTION LAB /POWER QUALITY LAB (MPSP201/MPSP243)

S.NoLis	t of experiments: Hours	
1.	Introduction to Power System Protection	2
2.	Impact of Induction Motor Starting on Power System	2
3.	Modelling of Differential Relay using MATLAB	2
4.	Radial Feeder Protection	2
5.	Parellel Feeder Protection	2
6.	Principle of Reverse Power Protection	2
7.	Differential Protection of Transformer	2
8.	To the study time vs.voltagecharacteristics of over voltage induction relay	2

LAB 4- ARTIFICIAL INTELLIGENCE/POWER ELECTRONICS/APPLICATIONTO POWER SYSTEM LAB/SMART GRID LAB(MPSP244/MPSP245/MPSP246)

S.No	Experiments	Hours
1	Write A Program For Best First Search	2
2	Write A Program to Generate the output for A* Algorithm.	2
3	Write a Program To Show the Tic Tac Toe Game for 0 and X.	2
4	Write A Program For Expert System By Using Forward Chaining.	2
5	Comparing the Search Methods	2
6	Implement the Greedy Search Algorithm	2
7	Implement the min-max Algorithm	2
8	Adding a Heuristic	2

THIRD SEMESTER

PE 5: POWER SYSTEM TRANSIENTS (MPST351)

Course Objectives: -Students will be able to:

- 1. Learn the reasons for occurrence of transients in a power system
- 2. Understand the change in parameters like voltage & frequency during transients
- 3. To know about the lightning phenomenon and its effect on power system

Syllabus

Units	Content	Hours
1	Fundamental circuit analysis of electrical transients	8
	Laplace Transform method of solving simple Switching transients	
	Damping circuits -Abnormal switching transients, Three-phase	
	circuits and transients	
	Computation of power system transients	
2	Principle of digital computation – Matrix method of solution	8
	Modal analysis- Z transform- Computation using EMTP	
	Lightning, switching and temporary over voltages, Lightning	
	Physical phenomena of lightning.	
3	Interaction between lightning and power system	8
	Influence of tower footing resistance and Earth Resistance	
	Switching: Short line or kilometric fault	
	Energizing transients - closing and	
	re-closing of lines	
	line dropping, load rejection – over voltages induced by faults	
4	Switching HVDC lineTravelling waves on transmission line	8
	Circuits with distributed Parameters Wave Equation	
	Reflection, Refraction, Behaviour of Travelling waves at the line	
	Terminations	
	Lattice Diagrams – Attenuation and Distortion	
	Multi-conductor system	
	and Velocity wave	
5	Insulation co-ordination: Principle of insulation co-ordination in Air	6
	Insulated substation (AIS) and Gas Insulated Substation (GIS) Co-	
	ordination between insulation and protection level	
	Statistical approach	
6	Protective devices	6
	Protection of system against over voltages	
	lightning arresters, substation earthling	

Suggested reading

1. Allan Greenwood, "Electrical Transients in Power System", Wiley & Sons Inc. New York, 1991 **Course Outcomes:** -

Students will be able to:

1. Knowledge of various transients that could occur in power system and their mathematical formulation

- 2. Ability to design various protective devices in power system for protecting equipment and personnel
- 3. Coordinating the insulation of various equipments in power system
- 4. Modelling the power system for transient analysis

PE 5:FACTS AND CUSTOM POWER DEVICES (MPST352)

- 1. To learn the active and reactive power flow control in power system
- 2. To understand the need for static compensators
- 3. To develop the different control strategies used for compensation

Units	Content	Hours
1	Reactive power flow control in Power Systems	8
	Control of dynamic power unbalances in Power System - Power flow	
	Control	
	Constraints of maximum transmission line loading	
	Benefits of FACTS Transmission line compensation	
	Uncompensated line -Shunt compensation, Series compensation Phase angle control	
	Reactive power compensation Shunt and Series compensation Principles	
	Reactive compensation at transmission and distribution level	
2	Static versus passive VAR compensator,	8
	Static shunt compensators: SVC and	
	STATCOM	
	Operation and control of TSC, TCR and STATCOM -Compensator Control	
	Comparison between SVC and STATCOM	
3	Static series compensation: TSSC, SSSC -Static voltage and phase	8
	angle regulators	
	TCVR and TCPAR Operationand Control	
	Applications, Static series compensation	
	GCSC, TSSC, TCSC and Static synchronous series compensators and	
	their Control	
4	SSR and its dampingUnified Power Flow Controller	8
	Circuit Arrangement, Operation	
	and control of UPFC	
	Basic Principle of P and Q control	
	Independent real and reactive power flow control- Applications.	
5	Introduction to interline power flow controller.	6
	Modeling and analysis of FACTS	
	Controllers	
	Simulation of FACTS controllers Power quality problems in distribution	
	systems,	
	harmonics, loads that create harmonics	
	modeling, harmonic propagation, series and parallel resonances mitigation of harmonics	
	passive filters, active filtering – shunt, series and hybrid and their	

	Control	
6	Voltage swells, sags, flicker, unbalance and mitigation of these	6
	problems by power line conditioners	
	IEEE standards on power quality.	

- 1. K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International Publishers, 2007
- 2. X P Zhang, C Rehtanz, B Pal, "Flexible AC Transmission Systems- Modelling and Control",
- 3. N.G. Hingorani, L. Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible ACTransmission Systems", IEEE Press Book, Standard Publishers and Distributors, Delhi, 2001.
- 4. K.S.Sureshkumar ,S.Ashok , "FACTS Controllers & Applications", E-book edition, NalandaDigitalLibrary, NIT Calicut,2003
- 5. G T Heydt, "Power Quality", McGraw-Hill Professional, 2007
- 6. T J E Miller, "Static Reactive Power Compensation", John Wiley and Sons, Newyork, 1982.

Course Outcomes: -

Students will be able to:

- 1. Acquire knowledge about the fundamental principles of Passive and Active Reactive PowerCompensation Schemes at Transmission and Distribution level in Power Systems.
- 2. Learn various Static VAR Compensation Schemes like Thyristor/GTOControlled Reactive Power Systems, PWM Inverter based Reactive Power Systems and theircontrols.
- 3. To develop analytical modeling skills needed for modeling and analysis of such Static VARSystems.

PE 5:IDUSTRIAL LOAD MODELING AND CONTROL (MPST353)

Course Objectives:-Students will be able to:

- 1. To understand the energy demand scenario
- 2. To understand the modeling of load and its ease to study load demand industrially
- 3. To know Electricity pricing models
- 4. Study Reactive power management in Industries

Syllabus

Units	Content	Hours
1	Electric Energy Scenario-Demand Side Management-Industrial Load	8
	Management	
	Load Curves-Load Shaping Objectives	
	Methodologies-Barriers	
	Classification of Industrial	
	Loads	
	Continuous and Batch processes -Load Modeling	
2	Electricity pricing – Dynamic and spot pricing -Models	8
	Direct load control- Interruptible load control	
	Bottom up approach- scheduling- Formulation of load	
	Models	
	Optimization and control algorithms - Case studies	
3	Reactive power management in industries	8
	controls-power quality impacts	
	application of filters Energy saving in industries	
	Page	•

	load profiling	
	Modeling- Cool storage	
	Types-Control strategies	
	Optimal operation	
	Problem formulation- Case studies	
5	Captive power units	6
	Operating and control strategies	
	Power Pooling- Operation models	
	Energy banking	
	Industrial Cogeneration	
6	Selection of Schemes Optimal Operating Strategies	6
	Peak load saving	
	Constraints Problem formulation- Case study	
	Integrated Load management for Industries	

- 1. C.O. Bjork " Industrial Load Management Theory, Practice and Simulations", Elsevier, the Netherlands, 1989
- 2. C.W. Gellings and S.N. Talukdar,. Load management concepts. IEEE Press, New York, 1986, pp. 3-28
- 3. Y. Manichaikul and F.C. Schweppe," Physically based Industrial load", IEEE Trans. on PAS, April 1981
- 4. H. G. Stoll, "Least cost Electricity Utility Planning", Wiley Interscience Publication, USA,
- 5. I.J.Nagarath and D.P.Kothari, .Modern Power System Engineering., Tata McGraw Hill publishers, NewDelhi, 1995
- 6. IEEE Bronze Book- "Recommended Practice for Energy Conservation and cost effective planning in Industrial facilities", IEEE Inc, USA

Course Outcomes: -

Students will be able to:

- 1: Knowledge about load control techniques in industries and its application
- 2: Learn different types of industrial processes and optimize the process using tools like LINDO and LINGO
- 3: Apply load management to reduce demand of electricity during peak time
- 4: Apply different energy saving opportunities in industries

PE 5: DYNAMICS OF LINEAR SYSTEMS (MPST354)

- 1. To understand the linear system and its functions
- 2. To understand the stability analysis of linear systems and implement the same in MATLAB

nits	Content	Hours
1	State variable representations of systems	8
	transfer function and transfer function matrix	
	solutions of state equations	
2	Observability and controllability	8
	minimal realization of MIMO systems	

analysis of linear time varying systems
the concepts of stability

3	Lyapunov stability analysis	8
	Lyapunov function and its properties	
	controllability by state variable feedback	
4	Ackerman's Formula - stabilisation by output feedback	6
	asymptotic observers for state measurement	
	observer design	
5	State space representation of discrete systems	6
	solution of state equations, controllability and observabilty stability	
	analysis using Lyapunov method	
6	State feedback of linear discrete timesystems	8
	design of observers - MATLAB Exercises	

- 1. Thomas Kailath, "Linear Systems", Prentice Hall Inc., Englewood Cliffs, N.J. 1980.
- 2. K. Ogata, "State Space Analysis of Control Systems", Prentice Hall Inc., Englewood Cliffs, N.J., 1965.
- 3. K. Ogata, "Modern Control Engineering, (second edition)", Prentice Hall Inc., Englewood Cliffs, N.J., 1990
- 4. M.Gopal, "Digital Control and State Variable Methods", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997
- 5. C.T. Chen, "Linear System Theory and Design", New York: Holt Rinehart and Winston
- 6. R.C. Dorf, and R. T. "Bishop, Modern Control Systems", Addison Wesley Longman Inc., 1999.

Course Outcomes:-

Students will be able to:

- 1. To learn linear system modeling, analysis and design so as to obtain theability to apply the same to engineering problems in a global perspective
- 2. Knowledge on carrying out detailed stability analysis of both linear and nonlinear systems
- 3. Design observers and controllers for linear systems
- 4. Acquire knowledge of discrete time linear systems modeling, analysis and design
- 5. Develop and utilize modern software tools for analysis and designof linear continuous and discrete time systems

PE 6: POWER SEMICONDUCTOR DEVICES AND MODELING

- 1. Understand the basic operation and I-V characteristics of various power semiconductor devices
- 2. Study the circuit model of various devices
- 3. Understand the protection and control circuit for these semiconductor devices

Units	Content	Hours
1	Energy auditing: Types and objectives - audit instruments- ECO	8
	Assessment	
	Economic methods specific energy analysis	
	Minimum energy paths-consumption models- Case study	
2	Electric motors-Energy efficient controls and starting efficiency	8

Motor Efficiency and Load Analysis- Energy efficient /high efficient Motors-Case study	
Load Matching and selection of motors. Variable speed drives; Pumps and Fans-Efficient Control strategies	

	Optimalselection and sizing – Optimal operation and Storage; Case study	
3	Transformer Loading/Efficiency analysis, Feeder/cable loss evaluation, Case study	8
	Reactive Power management-Capacitor Sizing-Degree of Compensation-Capacitor losses	
	Location-Placement Maintenance, Case study	
4	Peak Demand controls- Methodologies-Types of Industrial loads- Optimal Load	8
	scheduling-case study	
	Lighting- Energy efficient light sources-Energy conservation in Lighting Schemes	
	Electronic ballast-Power quality issues-Luminaries, Case study	
5	Cogeneration-Types and Schemes-Optimal operation of cogeneration plants-case study	6
	Electric loads of Air conditioning & Refrigeration-Energy conservation measures- Cool storage types Optimal operation case study	
	Electric water heating-Gysers-Solar Water Heaters	8
6	Power Consumption in Compressors	
	Energy conservation measures Electrolytic Process	
	Computer Controls- software – EMS	

- 1. Giovanni Petrecca, "Industrial Energy Management: Principles and Applications", The Kluwerinternational series -207, 1999
- 2. Anthony J. Pansini, Kenneth D. Smalling, "Guide to Electric Load Management", Pennwell Pub; (1998)
- 3. Handbook on Energy Audit and Environment Management , Y P Abbi and Shashank Jain, TERI, 2006
- 4. Handbook of Energy Audits Albert Thumann, William J. Younger, Terry Niehus, 2009

Course Outcomes:-

Students will be able to:

- 1. Acquire the background required for engineers to meet the role of energy managers and to acquire the skills and techniques required to implement energy management
- 2. Identify and quantify the energy intensive business activities in an organization
- 3. Knowledge about standard methodologies for measuring energy in the workplace and energy audit instruments
- 4. Knowledge about energy efficient motors, load matching and selection of motors
- 5. Acquire knowledge about reactive power management, capacitor sizing and degree of Compensation

PE 6:ENGINEERING OPTIMIZATION

Course Objectives:-Students will be able to:

- 1. To understand the need for optimization and different techniques involved and also constraints.
- 2. To know Linear/Non-linear Programming.
- 3. To understand the importance of optimization to solve Engineering problems

4. To know genetic algorithm for Engineering Optimization

Syllabu	S	
Units	Content	Hours
1	Concepts of optimization: Engineering applications	8
	Statement of optimization	
	Problem	
	Classification - type and size of the problem	
	Classical Optimization Techniques: Single and multi variable problems-	
	Types of Constraints	
	Semi definite case-saddle point	0
2	Linear programming: Standard form-Geometry of LP problems-Theorem of LP	8
	Relation to convexity - formulation of LP problems - simplex method	
	and algorithm	
	Matrix form- two phase method. Duality	
	dual simplex method- LU Decomposition	
3	Sensitivity analysis .Artificial variables and complementary solutions-	8
3	QP.	
	Engineering Applications: Minimum cost flow problem	
	Network problems-transportation,	
	assignment & allocation, scheduling	
	Karmarkar method-unbalanced and routing problems.	
4	Nonlinear programming: Non linearity concepts-convex and concave	6
	functions	
	non-linear programming -gradient and Hessian. Unconstrained	
	optimization	
	First &	
	Second order necessary conditions- Minimisation & Maximisation	
	Local & Global convergence-	
	Speed of convergence	0
5	Basic decent methods: Fibonacci & Golden section search - Gradient methods - Newton	8
	Method-Lagrange multiplier method - Kuhn-tucker conditions	
	Quasi-Newton method- separable	
	convex programming -Frank and Wolfe method, Engineering	
	Applications Programming Praint and World Incurse, Engineering	
	Nonlinear programming- Constrained optimization: Characteristics of	
	constraints-Direct methods- SLP,SQP-Indirect	
	Methods.	
	Transformation techniques-penalty function-Langrange multiplier	
	methods checking convergence- Engineering applications	
6	Dynamic programming: Multistage decision process- Concept of sub	6
	optimization and principle	
	Of optimality	
	Computational procedure- Engineering applications. Genetic algorithms-	
	Simulated Annealing Methods - Optimization programming, tools and Software	
	Packages	
	1 achages	

- 1. David G Luenberger, "Linear and Non Linear Programming", 2nd Ed, Addison-Wesley Pub.Co., Massachusetts, 2003
- 2. W.L.Winston, "Operation Research-Applications & Algorithms",2nd Ed., PWS-KENT Pub.Co.,Boston, 2007
- 3. S.S.Rao, "Engineering Optimization", 3rd Ed., New Age International (P) Ltd, New Delhi, 2007
- 4. W.F.Stocker, "Design of Thermal Systems", 3rd Ed., McGraw Hill, New York. 1990
- 5. G.B.Dantzig, "Linear Programming and Extensions" Princeton University Press, N.J., 1963.
- 6. L.C.W.Dixton, "Non Linear Optimisation: theory and algorithms" Birkhauser, Boston, 1980

Course Outcomes:-

Students will be able to:

- 1: Apply optimization techniques to typical engineering problems
- 2: Learn the concepts and techniques of nonlinear and unconstrained optimization
- 3: Acquire knowledge on direct and indirect methods for constrained optimization
- 4: Learn the application of dynamic programming and genetic algorithms for engineering Optimization

PE 6: HIGH VOLTAGE ENGINEERING

Course Objectives:-Students will be able to:

- 1. To get introduced to high voltage engineering
- 2. To understand different high voltage measurements and the necessary instruments

Units	Content	Hours
1	Voltage doubler - cascade circuits	6
	electrostatic machines	
2	Generation of Impulse voltages and curreningle stage and multistage	8
	circuits	
	wave shaping-tripping and control of impulse generators	
3	Generation of switching surge voltage and impulse current	8
	Measurement of high	
voltages ar	d currents	
	DC,AC and impulse voltages and currents	
	DSO-electrostatic and peak	
	Voltmeters sphere gaps-factors affecting measurements-potential	
	dividers(capacitive and resistive)	
	ance ammeters-rogowski coils-hall effect generators	
Digital tec	nniques in HV measurements	
4	Measurement of electric field, Sources of EMI	8
F	Principles of EMC, Filtering, Shielding	
	Grounding techniques	
5	Introduction to relevant national and international standards	8
I	ayout and clearances as	
v	vell as shielding and grounding of HV lab	
6	Safety regulations for high voltage tests, Calibration of HV measuring	8
	instruments	
Indian Star	dards for HV clearances. Recent trends in HV Engineering	

- 1. M. S. Naidu, V. Kamaraju, "High Voltage Engineering", McGraw-Hill, 1995.
- 2. M. Khalifa, "High Voltage Engineering: Theory and Practice", Dekker, 1990
- 3. H. M. Ryan, "High Voltage Engineering and Testing", Peter Peregrinus, 1994
- 4. Wadhwa C L."High Voltage Engineering", Wiley Eastern Limited, NewDelhi,1994
- 5. Ott, H.W.,"Noise Reduction Techniques in Electronic Systems", John Wiley, New York, 1989

Course Outcomes:-

Students will be able to:

- 1. Knowledge about the need for high voltage generation
- 2. Acquaint with the different methods for generating high voltage AC/DC and impulse voltages and current
- 3. Knowledge about the measurement techniques for high voltage AC/DC and impulsevoltages and currents
- 4. To learn sources of EMI and its mitigation techniques
- 5. Safety precautions to be taken while designing an HV lab

OE -ENERGY AUDITING AND MANAGEMENT

Course Objectives:-Students will be able to:

- 1. To understand the need for energy auditing
- 2. Understanding of various loads involved based on power consumption for auditing
- 3. To know about different audit instruments used in practice

Syllabus

U nits	Content	Hours
1	System approach and End use approach to efficient use of Electricity	6
	Electricity tariff types	
	Energy auditing: Types and objectives - audit instruments	
	ECO assessment and Economic methods	
	Specific energy analysis-Minimum energy paths-consumption models- Case study	
2	Electric motors-Energy efficient controls and starting efficiency-Motor	8
	Efficiency and Load	
	Analysis Energy efficient /high efficient Motors-Case study	
	Load Matching and selection of motors	
	Variable speed drives; Pumps and Fans-Efficient Control strategies-	
	Optimal selection and sizing	
	Optimal operation and Storage; Case study	
3	Transformer Loading/Efficiency analysis	8
	Feeder/cable loss evaluation, case study	
	Reactive Power management-Capacitor	
	Sizing-Degreeof Compensation-Capacitor losses	
	Location-Placement	
	Maintenance ,Case study	
4	Peak Demand controls- Methodologies	8
	Types of Industrial loads-Optimal Load	
	scheduling-case study	
	Lighting- Energy efficient light sources-Energy conservation in	
	Page	I

	Lighting	

	Schemes	
	Electronic ballast-Power quality issues-Luminaries, case study	
5	Cogeneration-Types and Schemes	8
	Optimal operation of cogeneration plants-case study	
	Electric loads of Air conditioning & Refrigeration	
	Energy conservation measures- Cool storage	
	Types-Optimal operation case study	
6	Electric water heating-	6
	Geysers-Solar Water Heaters	
	Power Consumption in Compressors	
	Energy conservation measures	
	Electrolytic Process	
	Computer Controls- software-EMS	

- 1. Anthony J. Pansini, Kenneth D. Smalling, .Guide to Electric Load Management., Pennwell Pub; (1998)
- 2. Howard E. Jordan, .Energy-Efficient Electric Motors and Their Applications., Plenum Pub Corp; 2ndedition (1994)
- 3. Giovanni Petrecca, .Industrial Energy Management: Principles and Applications., The Kluwerinternational series -207,1999
- 4. Handbook on Energy Audit and Environment Management , Y P Abbi and Shashank Jain, TERI,2006
- 5. Handbook of Energy Audits Albert Thumann, William J. Younger, Terry Niehus, 2009

Course Outcomes:-Students will be able to:

- 1. Acquire the background required for engineers to meet the role of energy managers and to acquire the skills and techniques required to implement energy management
- 2. Identify and quantify the energy intensive business activities in an organization
- 3. Able to perform Basic Energy Audit in an Organization

OPEN ELECTIVES

Business Analytics

Teaching scheme

Lecture: - 3 h/week

Course Code	
Course Name	Business Analytics (MOET391)
Credits	
Prerequisites	

Total Number of Lectures: 48

Course objective

- 1. Understand the role of business analytics within an organization.
- 2. Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
- 3. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
- 4. To become familiar with processes needed to develop, report, and analyze business data.

- 5. Use decision-making tools/Operations research techniques.
- 6. Mange business process using analytical and management tools.
- 7. Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc.

LECTURE WITH BREAKUP	NO. OF
	LECTURES
Unit1: Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.	9
Unit 2: Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.	8
Unit 3: Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.	9
Unit 4: Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.	10
Unit 5: Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.	8
Unit 6: Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.	4

COURSE OUTCOMES	

- 1. Students will demonstrate knowledge of data analytics.
- 2. Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
- 3. Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making.
- 4. Students will demonstrate the ability to translate data into clear, actionable insights.

Reference:

- 1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
- 2. Business Analytics by James Evans, persons Education.

OPEN ELECTIVES

Industrial Safety (MOET392) Teaching scheme

Lecture: - 3 h/week

Unit-I: Industrial safety: Accident, causes, types, results and control, mechanical and electricalhazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-II: Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-III: Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reductionmethods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-IV: Fault tracing: Fault tracing-concept and importance, decision treeconcept, need andapplications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-V: Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets,

Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Reference:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

OPEN ELECTIVES

Operations Research(MOET393)

Teaching Scheme

Lectures: 3 hrs/week

Course Outcomes: At the end of the course, the student should be able to

- 1. Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.
- 2. Students should able to apply the concept of non-linear programming
- 3. Students should able to carry out sensitivity analysis
- 4. Student should able to model the real world problem and simulate it.

Syllabus Contents:

Unit 1:

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit 2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit 3:

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit 4

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit 5

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

References:

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.

- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

Open Elective

Cost Management & Engineering Projects (MOET394) Teaching scheme

Lecture: - 3 h/week

Introduction and Overview of the Strategic Cost Management Process

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

References:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of CostAccounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

Open Elective Composite Materials (MOET395) Teaching scheme

Lecture: - 3 h/week

UNIT–I: INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

UNIT – **II**: REINFORCEMENTS: Preparation-layup, curing, properties and applications of glassfibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

UNIT – **III:** Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-IV: Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and preparation – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – **V:** Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximumstrain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

REFERENCES:

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

Open Elective

Waste to Energy Teaching scheme (MOET396)

Lecture: - 3 h/week

Unit-I: Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forestresidue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Unit-II: Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-III: Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit-IV: Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-V: Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technologyand status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants — Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

References:

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

AUDIT 1 and 2: ENGLISH FOR RESEARCH PAPER WRITING (MAUT191)

Course objectives:

Students will be able to:

- 1. Understand that how to improve your writing skills and level of readability
- 2. Learn about what to write in each section
- 3. Understand the skills needed when writing a Title

Units	CONTENTS	Hours
1	Planning and Preparation, Word Order, Breaking up long sentences,	4
	Structuring Paragraphs and Sentences, Being Concise and Removing	
	Redundancy, Avoiding Ambiguity and Vagueness	
2	Clarifying Who Did What, Highlighting Your Findings, Hedging and	4
	Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts.	
	Introduction	
3	Review of the Literature, Methods, Results, Discussion, Conclusions, The	4
	Final Check.	
4	key skills are needed when writing a Title, key skills are needed when	4
	writing an Abstract, key skills are needed when writing an Introduction,	
	skills needed when writing a Review of the Literature,	
5	skills are needed when writing the Methods, skills needed when writing the	4
	Results, skills are needed when writing the Discussion, skills are needed	
	when writing the Conclusions	
	useful phrases, how to ensure paper is as good as it could possibly be the	
6	first-time submission	4

Suggested Studies:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- **4.** Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

AUDIT 1 and 2: DISASTER MANAGEMENT (MAUT192)

Course Objectives:-Students will be able to:

11. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.

- 12. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- 13. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.

14. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in

Syllabus

Units	CONTENTS	Hours
	Introduction	
	Disaster: Definition, Factors And Significance; Difference Between Hazard	
	And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And	
1	Magnitude.	4
	Repercussions Of Disasters And Hazards: Economic Damage, Loss Of	
	Human And Animal Life, Destruction Of Ecosystem.	
	Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods,	
	Droughts And Famines, Landslides And Avalanches, Man-made disaster:	
	Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills,	
2	Outbreaks Of Disease And Epidemics, War And Conflicts.	4
	Disaster Prone Areas In India	
	Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides	
	And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special	
3	Reference To Tsunami; Post-Disaster Diseases And Epidemics	4
	Disaster Preparedness And Management	
	Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard;	
	Evaluation Of Risk: Application Of Remote Sensing, Data From	
	Meteorological And Other Agencies, Media Reports: Governmental And	
4	Community Preparedness.	4
	Risk Assessment	
	Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And	
	National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-	
	Operation In Risk Assessment And Warning, People's Participation In Risk	
5	Assessment. Strategies for Survival.	4
	Disaster Mitigation	
	Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In	1
	Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of	f
	Disaster Mitigation In India.	
6		4

SUGGESTED READINGS:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

AUDIT 1 and 2: SANSKRIT FOR TECHNICAL KNOWLEDGE (MOUT193)

Course Objectives

- 1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- 2. Learning of Sanskrit to improve brain functioning
- 3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- 4. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Syllabus

Unit	Content	Hours
1	Alphabets in Sanskrit,	8
	Past/Present/Future Tense,	
	Simple Sentences	
2	Order	8
	Introduction of roots	
	Technical information about Sanskrit Literature	
3	Technical concepts of Engineering-Electrical, Mechanical,	8
	Architecture, Mathematics	

Suggested reading

- 1. "Abhyaspustakam" Dr. Vishwas, Sanskrit-BhartiPublication, New Delhi
- 2. "Teach Yourself Sanskrit" PrathamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Course Output

Students will be able to

- 1. Understanding basic Sanskrit language
- 2. Ancient Sanskrit literature about science & technology can be understood
- 3. Being a logical language will help to develop logic in students

Course Objectives

Students will be able to

- 1. Understand value of education and self- development
- 2. Imbibe good values in students
- 3. Let the should know about the importance of character

Syllabus

Unit	Content	Hours
1	Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements	4
2	Importance of cultivation of values. Sense of duty. Devotion, Self-reliance.Confidence,Concentration.Truthfulness, Cleanliness.	6
	Honesty ,Humanity.Power of faith, National Unity.	
3	Patriotism.Love for nature ,Discipline Personality and Behaviour Development - Soul and Scientific attitude.PositiveThinking.Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from one or Disprity of Johanne.	6
	Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.	
	True friendship.	
	Happiness Vs suffering, love for truth.	
	Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature	
4	Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality ,Non violence ,Humility, Role of Women. All religions and same message. Mind your Mind ,Self-control. Honesty, Studying effectively	6

Suggested reading

 $1\ Chakroborty\ ,\ S.K.\ ``Values\ and\ Ethics\ for\ organizations\ Theory\ and\ practice",\ Oxford\ University\ Press\ ,New\ Delhi$

Course outcomes

Students will be able to

- 1.Knowledge of self-development
- 2.Learn the importance of Human values
- 3. Developing the overall personality

AUDIT 1 and 2: CONSTITUTION OF INDIA (MAUT291)

Course Objectives:

Students will be able to:

- 1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- 2. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- 3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Syllabus		
Units	Content	Hours
History o	f Making of the Indian Constitution:	
1.	History	4
	Committee, (Composition& Working)	
_	ny of the Indian Constitution:	
2.	Preamble	4
	\$alient Features	
	Contours of Constitutional Rights & Duties:	
	Fundamental Rights	
	Right to Equality	
	Right to Freedom	
	Right against Exploitation	4
3	Right to Freedom of Religion	
	Cultural and Educational Rights	
	Right to Constitutional Remedies	
	Directive Principles of State Policy	
	Fundamental Duties.	
	Organs of Governance:	
	Parliament	
	Composition	
	Qualifications and Disqualifications	4
4	Powers and Functions	4
	Executive	
	President	
	Governor	
I	Council of Ministers	

	Judiciary, Appointment and Transfer of Judges, Qualifications Powers and Functions	
5	Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy	4
6	Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.	4

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course Outcomes:

Students will be able to:

- 1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- 2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- 3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- 4. Discuss the passage of the Hindu Code Bill of 1956.

AUDIT 1 and 2: PEDAGOGICAL STUDIES (MAUT292)

Course Objectives:

Students will be able to:

- 1. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- 2. Identify critical evidence gaps to guide the development.

Syllabus			
Units	Content	Hours	
ntroducti	on and Methodology:		
A	ims and rationale, Policy background, Conceptu Terminology	ual framework and	
	Theories of learning, Curriculum, Teacher ed	lucation. 4	
	Conceptual framework, Research questions. Overview of methodology and Searching.		

	Thematic overview: Pedagogical practices are being used by teachers in	
2	formal and informal classrooms in developing countries.	2
	Curriculum, Teacher education.	
3	Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.	4
4	Professional development: alignment with classroom practices and follow- up support Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes	4
5	Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.	2

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of
- 3. Curriculum Studies, 36 (3): 361-379.
- 4. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 5. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 6. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education.
- 7. Oxford and Boston: Blackwell.
- 8. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
- 9. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Outcomes:

Students will be able to understand:

- 1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- 2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- 3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

AUDIT 1 and 2: STRESS MANAGEMENT BY YOGA (MAUT293)

Course Objectives

- 1. To achieve overall health of body and mind
- 2. To overcome stress

Syllabus

Unit	Content	Hours
1	Definitions of Eight parts of yog. (Ashtanga)	8
2	Yam and Niyam. Do`s and Don't's in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan	8
3	Asan and Pranayam i) Various yog poses and their benefits for mind & body ii)Regularization of breathing techniques and its effects-Types of pranayam	8

Suggested reading

- 1. 'Yogic Asanas for Group Tarining-Part-I" : Janardan Swami YogabhyasiMandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

Course Outcomes:

Students will be able to:

- 1. Develop healthy mind in a healthy body thus improving social health also
- 2. Improve efficiency

AUDIT 1 and 2: PERSONALITY DEVELOPMENT THROUGH LIFE and ENLIGHTENMENT SKILLS (MAUT294)

Course Objectives

- 1. To learn to achieve the highest goal happily
- 2. To become a person with stable mind, pleasing personality and determination
- 3. To awaken wisdom in students

Syllabus

Unit	Content	Hours
1	Neetisatakam-Holistic development of personality	8
	Verses- 19,20,21,22 (wisdom)	
	Verses- 29,31,32 (pride & heroism)	
	Verses- 26,28,63,65 (virtue)	
	Verses- 52,53,59 (dont's)	
	Verses- 71,73,75,78 (do's)	
_		
2	Approach to day to day work and duties.	8
	ShrimadBhagwadGeeta: Chapter 2-Verses 41, 47,48,	
	Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17,	
	23, 35,	
	Chapter 18-Verses 45, 46, 48.	
3	Statements of basic knowledge.	8
	ShrimadBhagwadGeeta: Chapter2-Verses 56, 62, 68	
	Chapter 12 - Verses 13, 14, 15, 16,17, 18	
	Personality of Role model. ShrimadBhagwadGeeta:	
	Chapter2-Verses 17, Chapter 3-Verses 36,37,42,	
	Chapter 4-Verses 18, 38,39	
	Chapter18 – Verses 37,38,63	

Suggested reading

- 1. "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Outcomes

Students will be able to

- 1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- 2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- 3. Study of Neetishatakam will help in developing versatile personality of students.