## **Course Name: Computer Organization & Architecture**

## Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Understand the basic organization of computer and different instruction formats and addressing modes
- 2. Analyze the concept of pipelining, segment registers and pin diagram of CPU.
- 3. Understand and analyze various issues related to memory hierarchy
- 4. Evaluate various modes of data transfer between CPU and I/O devices and Examine various inter connection structures of multi processors.

| Model Question Paper for End Semester Examination                                        |                                                                  |                        |           |         |            |    |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|-----------|---------|------------|----|
| Course Code:CAT007 Course Title: Com<br>Architecture<br>Duration: 3 brs. Max. Marks: 100 |                                                                  | outer Organization and |           |         |            |    |
|                                                                                          |                                                                  | Chitecture             | 0         |         |            |    |
|                                                                                          |                                                                  |                        |           |         |            |    |
| Note: /<br>questi                                                                        | Answer five questions; any Four questions from unit-III, IV & V  | om each unit-l an      | id unit-l | I and T | wo full    |    |
|                                                                                          | Unit-I                                                           |                        |           |         |            |    |
| Q.No                                                                                     | Questions                                                        |                        | Marks     | со      | PI<br>Code | BL |
| 1 a                                                                                      | Convert the decimal number 205.5 to base 3, ba<br>8 and base 16. | ase 4, base 7 base     | 5         | CO1     | 1.4.4      | L3 |
| b                                                                                        | Perform the subtraction with the following decinusing-           | mal number             |           |         | 1.4.4      |    |
|                                                                                          | i. 10's complement ii. 9's co                                    | omplement              |           |         |            |    |
|                                                                                          | check the answer by straight subtraction-                        |                        |           |         |            |    |
|                                                                                          | a. 5250 - 321                                                    |                        |           |         |            |    |
|                                                                                          | b. 753 - 864                                                     |                        | 5         | CO1     |            | L3 |
| С                                                                                        | simplify the following Boolean function using 4-                 | variable maps-         |           |         | 1 1 1      |    |
|                                                                                          | i. F(A,B,C,D) = ∑ ( 4 , 6 , 7 , 15 )                             |                        | _         |         | 1.4.4      |    |
|                                                                                          | ii. F(A,B,C,D) = ∑ ( 3 , 7 , 11 , 13 , 14 , 15 )                 |                        | 5         | CO1     |            | L3 |
| d                                                                                        | Why NAND gate and NOR gate is called Universa                    | al gate ?              |           |         | 1.4.4      | L1 |
|                                                                                          |                                                                  |                        | 5         | CO1     |            |    |

| е  | Simplify the Boolean function-                                                                                                                                 |    |             | 1.4.4 | L3  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|-------|-----|
|    | f (A B, D )=Σ( 0 2 3 5 7 8 9) WITH ( 10 11 12 13 14 15) As don't                                                                                               |    |             |       |     |
|    | cares.                                                                                                                                                         | 5  | CO1         |       |     |
|    |                                                                                                                                                                |    |             |       |     |
|    |                                                                                                                                                                |    |             |       |     |
|    | Unit-II                                                                                                                                                        |    |             |       |     |
| 2a | Draw and explain a 4 - bit parallel binary Subtractor.                                                                                                         | _  | <b>GO</b> 4 | 1.4.4 |     |
|    |                                                                                                                                                                | 5  | CO1         |       | L1  |
| b  | Realize a full adder using NAND gates only.                                                                                                                    | 5  | COL         | 1.4.4 | Т 1 |
|    |                                                                                                                                                                | 5  | COI         |       | LI  |
| с  | Realize a Carry look ahead adder                                                                                                                               | 5  | CO1         | 1.4.4 | L1  |
|    |                                                                                                                                                                |    |             |       |     |
|    |                                                                                                                                                                | -  | 601         | 4 4 4 |     |
| a  | Draw two bit Magnitude comparator.                                                                                                                             | 5  | 01          | 1.4.4 | Ll  |
|    |                                                                                                                                                                |    |             |       |     |
| е  | What is Multiplexer. Draw 4x1 MUX.                                                                                                                             | 5  | CO1         | 1.4.4 | L1  |
|    |                                                                                                                                                                |    |             |       |     |
|    | Unit-III                                                                                                                                                       |    |             |       |     |
|    |                                                                                                                                                                |    |             |       |     |
|    |                                                                                                                                                                | 10 | CO1         | 1 1 1 | 1.2 |
| a  | Show that a JK flip flop can be converted to a D flip flop with                                                                                                | 10 | 01          | 1.4.4 | LZ  |
|    | an inverter between the J and K input.                                                                                                                         |    |             |       |     |
| b  | Design a 3 bit binary counter.                                                                                                                                 | 10 | CO1         | 1.4.4 | L1  |
|    |                                                                                                                                                                |    |             |       |     |
| С  | Design a Johnson counter                                                                                                                                       | 10 | CO1         | 1.4.4 | L1  |
|    |                                                                                                                                                                |    |             |       |     |
|    |                                                                                                                                                                |    |             |       |     |
|    | Shit-W                                                                                                                                                         |    |             |       |     |
|    |                                                                                                                                                                | T  |             | n     |     |
| а  | Draw a timing diagram of SC is cleared to 0 at time $T_3$ if                                                                                                   | 10 | CO4         | 2.1.2 | L4  |
|    | Control signal C / is active.<br>$C_7T_2$ : SC<-0                                                                                                              |    |             |       |     |
|    |                                                                                                                                                                |    |             |       |     |
|    | $C_7$ is activated with the positive clock transition                                                                                                          |    |             |       |     |
|    | associated with T.                                                                                                                                             | 10 | 602         | 212   |     |
| a  | The content of AC in the basic computer is hexadecimal A937                                                                                                    | 10 |             | 2.1.2 | L4  |
|    | AC F PC AR and IR in hexadecimal after the execution of the                                                                                                    |    |             |       |     |
|    | CLA instruction. The initial value of PC is hexadecimal 021.                                                                                                   |    |             |       |     |
| С  | A stack organization such that SP always points at the next empty location                                                                                     | 10 | CO4         | 1.4.4 | L3  |
|    | on the stack. This means the SP can be initialized to 4000 and the firt item<br>in the stack is stored in location 4000. List the micro operation for the PUSH |    |             |       |     |
|    | and POP operation.                                                                                                                                             |    |             |       |     |

| Unit-V |                                                                                                                                                                                                                                                                                                                                                                       |    |     |       |    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-------|----|
|        | Ι                                                                                                                                                                                                                                                                                                                                                                     |    |     |       |    |
| а      | Consider a cache consisting of 256 blocks of 8 words each, for<br>a total of 2048 words, and assume that the main memory is<br>addressable by a 16-bit address. The main memory has 64K<br>words which are divided into 8192 blocks of 8 words each.<br>Find the number of bits in Tag, Block and Word Field of the<br>main memory address for direct mapping scheme. | 10 | CO3 | 1.4.4 | L3 |
| b      | Write a note on memory hierarchy with the neat diagram.                                                                                                                                                                                                                                                                                                               | 10 | CO3 | 1.4.4 | L1 |
| С      | Describe the Direct Mapping.                                                                                                                                                                                                                                                                                                                                          | 10 | CO3 | 1.4.4 | L1 |



BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating 6 - Creating)

**CO – Course Outcomes** 

PO – Program Outcomes;

PI Code – Performance Indicator Code

## Competency addressed in the Course and corresponding PerformanceIndicators

| Competency                                                                              | Performance Indicators                                                                                                |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <b>1.4:</b> Demonstrate competence in computer science engineering knowledge            | <b>1.4.4</b> Apply machine dependent/independent features to build system modules.                                    |
| <b>2.1:</b> Demonstrate an ability to identify and characterize an engineering problem. | <b>2.1.2</b> : Identify processes, modules, variables, and parameters of computer based system to solve the problems. |

Eg: 1.2.3: Represents Program Outcome "1", Competency "2" and Performance Indicators "3".